Metamath Proof Explorer


Theorem fourierdlem66

Description: Value of the G function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem66.f φF:
fourierdlem66.x φX
fourierdlem66.y φY
fourierdlem66.w φW
fourierdlem66.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
fourierdlem66.h H=sππifs=00FX+sif0<sYWs
fourierdlem66.k K=sππifs=01s2sins2
fourierdlem66.u U=sππHsKs
fourierdlem66.s S=sππsinn+12s
fourierdlem66.g G=sππUsSs
fourierdlem66.a A=ππ0
Assertion fourierdlem66 φnsAGs=πFX+sif0<sYWDns

Proof

Step Hyp Ref Expression
1 fourierdlem66.f φF:
2 fourierdlem66.x φX
3 fourierdlem66.y φY
4 fourierdlem66.w φW
5 fourierdlem66.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
6 fourierdlem66.h H=sππifs=00FX+sif0<sYWs
7 fourierdlem66.k K=sππifs=01s2sins2
8 fourierdlem66.u U=sππHsKs
9 fourierdlem66.s S=sππsinn+12s
10 fourierdlem66.g G=sππUsSs
11 fourierdlem66.a A=ππ0
12 11 eqimssi Aππ0
13 difss ππ0ππ
14 12 13 sstri Aππ
15 14 a1i φAππ
16 15 sselda φsAsππ
17 16 adantlr φnsAsππ
18 1 adantr φnF:
19 2 adantr φnX
20 3 adantr φnY
21 4 adantr φnW
22 18 19 20 21 6 7 8 fourierdlem55 φnU:ππ
23 22 adantr φnsAU:ππ
24 23 17 ffvelcdmd φnsAUs
25 nnre nn
26 9 fourierdlem5 nS:ππ
27 25 26 syl nS:ππ
28 27 ad2antlr φnsAS:ππ
29 28 17 ffvelcdmd φnsASs
30 24 29 remulcld φnsAUsSs
31 10 fvmpt2 sππUsSsGs=UsSs
32 17 30 31 syl2anc φnsAGs=UsSs
33 1 2 3 4 6 fourierdlem9 φH:ππ
34 33 adantr φsAH:ππ
35 34 16 ffvelcdmd φsAHs
36 7 fourierdlem43 K:ππ
37 36 a1i φsAK:ππ
38 37 16 ffvelcdmd φsAKs
39 35 38 remulcld φsAHsKs
40 8 fvmpt2 sππHsKsUs=HsKs
41 16 39 40 syl2anc φsAUs=HsKs
42 0red φsA0
43 1 adantr φsAF:
44 2 adantr φsAX
45 pire π
46 45 renegcli π
47 iccssre ππππ
48 46 45 47 mp2an ππ
49 14 sseli sAsππ
50 48 49 sselid sAs
51 50 adantl φsAs
52 44 51 readdcld φsAX+s
53 43 52 ffvelcdmd φsAFX+s
54 3 4 ifcld φif0<sYW
55 54 adantr φsAif0<sYW
56 53 55 resubcld φsAFX+sif0<sYW
57 simpr φsAsA
58 12 57 sselid φsAsππ0
59 58 eldifbd φsA¬s0
60 velsn s0s=0
61 59 60 sylnib φsA¬s=0
62 61 neqned φsAs0
63 56 51 62 redivcld φsAFX+sif0<sYWs
64 42 63 ifcld φsAifs=00FX+sif0<sYWs
65 6 fvmpt2 sππifs=00FX+sif0<sYWsHs=ifs=00FX+sif0<sYWs
66 16 64 65 syl2anc φsAHs=ifs=00FX+sif0<sYWs
67 61 iffalsed φsAifs=00FX+sif0<sYWs=FX+sif0<sYWs
68 66 67 eqtrd φsAHs=FX+sif0<sYWs
69 1red φsA1
70 2re 2
71 70 a1i φsA2
72 51 rehalfcld φsAs2
73 72 resincld φsAsins2
74 71 73 remulcld φsA2sins2
75 2cnd φsA2
76 73 recnd φsAsins2
77 2ne0 20
78 77 a1i φsA20
79 fourierdlem44 sππs0sins20
80 16 62 79 syl2anc φsAsins20
81 75 76 78 80 mulne0d φsA2sins20
82 51 74 81 redivcld φsAs2sins2
83 69 82 ifcld φsAifs=01s2sins2
84 7 fvmpt2 sππifs=01s2sins2Ks=ifs=01s2sins2
85 16 83 84 syl2anc φsAKs=ifs=01s2sins2
86 61 iffalsed φsAifs=01s2sins2=s2sins2
87 85 86 eqtrd φsAKs=s2sins2
88 68 87 oveq12d φsAHsKs=FX+sif0<sYWss2sins2
89 56 recnd φsAFX+sif0<sYW
90 51 recnd φsAs
91 75 76 mulcld φsA2sins2
92 89 90 91 62 81 dmdcan2d φsAFX+sif0<sYWss2sins2=FX+sif0<sYW2sins2
93 41 88 92 3eqtrd φsAUs=FX+sif0<sYW2sins2
94 93 adantlr φnsAUs=FX+sif0<sYW2sins2
95 25 ad2antlr φnsAn
96 1red φnsA1
97 96 rehalfcld φnsA12
98 95 97 readdcld φnsAn+12
99 50 adantl φnsAs
100 98 99 remulcld φnsAn+12s
101 100 resincld φnsAsinn+12s
102 9 fvmpt2 sππsinn+12sSs=sinn+12s
103 17 101 102 syl2anc φnsASs=sinn+12s
104 94 103 oveq12d φnsAUsSs=FX+sif0<sYW2sins2sinn+12s
105 89 adantlr φnsAFX+sif0<sYW
106 91 adantlr φnsA2sins2
107 101 recnd φnsAsinn+12s
108 81 adantlr φnsA2sins20
109 105 106 107 108 div32d φnsAFX+sif0<sYW2sins2sinn+12s=FX+sif0<sYWsinn+12s2sins2
110 25 adantr nsAn
111 halfre 12
112 111 a1i nsA12
113 110 112 readdcld nsAn+12
114 50 adantl nsAs
115 113 114 remulcld nsAn+12s
116 115 resincld nsAsinn+12s
117 116 recnd nsAsinn+12s
118 70 a1i nsA2
119 114 rehalfcld nsAs2
120 119 resincld nsAsins2
121 118 120 remulcld nsA2sins2
122 121 recnd nsA2sins2
123 picn π
124 123 a1i nsAπ
125 2cnd sA2
126 rehalfcl ss2
127 resincl s2sins2
128 50 126 127 3syl sAsins2
129 128 recnd sAsins2
130 77 a1i sA20
131 eldifsni sππ0s0
132 131 11 eleq2s sAs0
133 49 132 79 syl2anc sAsins20
134 125 129 130 133 mulne0d sA2sins20
135 134 adantl nsA2sins20
136 0re 0
137 pipos 0<π
138 136 137 gtneii π0
139 138 a1i nsAπ0
140 117 122 124 135 139 divdiv1d nsAsinn+12s2sins2π=sinn+12s2sins2π
141 2cnd nsA2
142 129 adantl nsAsins2
143 141 142 124 mulassd nsA2sins2π=2sins2π
144 143 oveq2d nsAsinn+12s2sins2π=sinn+12s2sins2π
145 142 124 mulcomd nsAsins2π=πsins2
146 145 oveq2d nsA2sins2π=2πsins2
147 141 124 142 mulassd nsA2πsins2=2πsins2
148 146 147 eqtr4d nsA2sins2π=2πsins2
149 148 oveq2d nsAsinn+12s2sins2π=sinn+12s2πsins2
150 140 144 149 3eqtrd nsAsinn+12s2sins2π=sinn+12s2πsins2
151 150 oveq2d nsAπsinn+12s2sins2π=πsinn+12s2πsins2
152 116 121 135 redivcld nsAsinn+12s2sins2
153 152 recnd nsAsinn+12s2sins2
154 153 124 139 divcan2d nsAπsinn+12s2sins2π=sinn+12s2sins2
155 5 dirkerval2 nsDns=ifsmod2π=02n+12πsinn+12s2πsins2
156 50 155 sylan2 nsADns=ifsmod2π=02n+12πsinn+12s2πsins2
157 fourierdlem24 sππ0smod2π0
158 157 11 eleq2s sAsmod2π0
159 158 neneqd sA¬smod2π=0
160 159 adantl nsA¬smod2π=0
161 160 iffalsed nsAifsmod2π=02n+12πsinn+12s2πsins2=sinn+12s2πsins2
162 156 161 eqtr2d nsAsinn+12s2πsins2=Dns
163 162 oveq2d nsAπsinn+12s2πsins2=πDns
164 151 154 163 3eqtr3d nsAsinn+12s2sins2=πDns
165 164 oveq2d nsAFX+sif0<sYWsinn+12s2sins2=FX+sif0<sYWπDns
166 165 adantll φnsAFX+sif0<sYWsinn+12s2sins2=FX+sif0<sYWπDns
167 123 a1i φnsAπ
168 5 dirkerre nsDns
169 50 168 sylan2 nsADns
170 169 recnd nsADns
171 170 adantll φnsADns
172 105 167 171 mul12d φnsAFX+sif0<sYWπDns=πFX+sif0<sYWDns
173 109 166 172 3eqtrd φnsAFX+sif0<sYW2sins2sinn+12s=πFX+sif0<sYWDns
174 32 104 173 3eqtrd φnsAGs=πFX+sif0<sYWDns