Metamath Proof Explorer


Theorem frege124d

Description: If F is a function, A is the successor of X , and B follows X in the transitive closure of F , then A and B are the same or B follows A in the transitive closure of F . Similar to Proposition 124 of Frege1879 p. 80. Compare with frege124 . (Contributed by RP, 16-Jul-2020)

Ref Expression
Hypotheses frege124d.f φFV
frege124d.x φXdomF
frege124d.a φA=FX
frege124d.xb φXt+FB
frege124d.fun φFunF
Assertion frege124d φAt+FBA=B

Proof

Step Hyp Ref Expression
1 frege124d.f φFV
2 frege124d.x φXdomF
3 frege124d.a φA=FX
4 frege124d.xb φXt+FB
5 frege124d.fun φFunF
6 3 eqcomd φFX=A
7 funbrfvb FunFXdomFFX=AXFA
8 5 2 7 syl2anc φFX=AXFA
9 6 8 mpbid φXFA
10 funeu FunFXFA∃!aXFa
11 5 9 10 syl2anc φ∃!aXFa
12 fvex FXV
13 3 12 eqeltrdi φAV
14 sbcan [˙A/a]˙XFa¬at+FB[˙A/a]˙XFa[˙A/a]˙¬at+FB
15 sbcbr2g AV[˙A/a]˙XFaXFA/aa
16 csbvarg AVA/aa=A
17 16 breq2d AVXFA/aaXFA
18 15 17 bitrd AV[˙A/a]˙XFaXFA
19 sbcng AV[˙A/a]˙¬at+FB¬[˙A/a]˙at+FB
20 sbcbr1g AV[˙A/a]˙at+FBA/aat+FB
21 16 breq1d AVA/aat+FBAt+FB
22 20 21 bitrd AV[˙A/a]˙at+FBAt+FB
23 22 notbid AV¬[˙A/a]˙at+FB¬At+FB
24 19 23 bitrd AV[˙A/a]˙¬at+FB¬At+FB
25 18 24 anbi12d AV[˙A/a]˙XFa[˙A/a]˙¬at+FBXFA¬At+FB
26 14 25 bitrid AV[˙A/a]˙XFa¬at+FBXFA¬At+FB
27 13 26 syl φ[˙A/a]˙XFa¬at+FBXFA¬At+FB
28 spesbc [˙A/a]˙XFa¬at+FBaXFa¬at+FB
29 27 28 syl6bir φXFA¬At+FBaXFa¬at+FB
30 9 29 mpand φ¬At+FBaXFa¬at+FB
31 eupicka ∃!aXFaaXFa¬at+FBaXFa¬at+FB
32 11 30 31 syl6an φ¬At+FBaXFa¬at+FB
33 alinexa aXFa¬at+FB¬aXFaat+FB
34 funrel FunFRelF
35 5 34 syl φRelF
36 reltrclfv FVRelFRelt+F
37 1 35 36 syl2anc φRelt+F
38 brrelex2 Relt+FXt+FBBV
39 37 4 38 syl2anc φBV
40 brcog XdomFBVXt+FFBaXFaat+FB
41 2 39 40 syl2anc φXt+FFBaXFaat+FB
42 41 notbid φ¬Xt+FFB¬aXFaat+FB
43 33 42 bitr4id φaXFa¬at+FB¬Xt+FFB
44 32 43 sylibd φ¬At+FB¬Xt+FFB
45 brdif Xt+Ft+FFBXt+FB¬Xt+FFB
46 45 simplbi2 Xt+FB¬Xt+FFBXt+Ft+FFB
47 4 44 46 sylsyld φ¬At+FBXt+Ft+FFB
48 trclfvdecomr FVt+F=Ft+FF
49 1 48 syl φt+F=Ft+FF
50 uncom Ft+FF=t+FFF
51 49 50 eqtrdi φt+F=t+FFF
52 eqimss t+F=t+FFFt+Ft+FFF
53 51 52 syl φt+Ft+FFF
54 ssundif t+Ft+FFFt+Ft+FFF
55 53 54 sylib φt+Ft+FFF
56 55 ssbrd φXt+Ft+FFBXFB
57 47 56 syld φ¬At+FBXFB
58 funbrfv FunFXFBFX=B
59 5 57 58 sylsyld φ¬At+FBFX=B
60 eqcom FX=BB=FX
61 59 60 imbitrdi φ¬At+FBB=FX
62 eqtr3 A=FXB=FXA=B
63 3 61 62 syl6an φ¬At+FBA=B
64 63 orrd φAt+FBA=B