Metamath Proof Explorer


Theorem frgr3v

Description: Any graph with three vertices which are completely connected with each other is a friendship graph. (Contributed by Alexander van der Vekens, 5-Oct-2017) (Revised by AV, 29-Mar-2021)

Ref Expression
Hypotheses frgr3v.v V=VtxG
frgr3v.e E=EdgG
Assertion frgr3v AXBYCZABACBCV=ABCGUSGraphGFriendGraphABEBCECAE

Proof

Step Hyp Ref Expression
1 frgr3v.v V=VtxG
2 frgr3v.e E=EdgG
3 1 2 isfrgr GFriendGraphGUSGraphkVlVk∃!xVxkxlE
4 3 a1i AXBYCZABACBCV=ABCGUSGraphGFriendGraphGUSGraphkVlVk∃!xVxkxlE
5 id V=ABCV=ABC
6 difeq1 V=ABCVk=ABCk
7 reueq1 V=ABC∃!xVxkxlE∃!xABCxkxlE
8 6 7 raleqbidv V=ABClVk∃!xVxkxlElABCk∃!xABCxkxlE
9 5 8 raleqbidv V=ABCkVlVk∃!xVxkxlEkABClABCk∃!xABCxkxlE
10 9 anbi2d V=ABCGUSGraphkVlVk∃!xVxkxlEGUSGraphkABClABCk∃!xABCxkxlE
11 10 baibd V=ABCGUSGraphGUSGraphkVlVk∃!xVxkxlEkABClABCk∃!xABCxkxlE
12 11 adantl AXBYCZABACBCV=ABCGUSGraphGUSGraphkVlVk∃!xVxkxlEkABClABCk∃!xABCxkxlE
13 4 12 bitrd AXBYCZABACBCV=ABCGUSGraphGFriendGraphkABClABCk∃!xABCxkxlE
14 sneq k=Ak=A
15 14 difeq2d k=AABCk=ABCA
16 preq2 k=Axk=xA
17 16 preq1d k=Axkxl=xAxl
18 17 sseq1d k=AxkxlExAxlE
19 18 reubidv k=A∃!xABCxkxlE∃!xABCxAxlE
20 15 19 raleqbidv k=AlABCk∃!xABCxkxlElABCA∃!xABCxAxlE
21 sneq k=Bk=B
22 21 difeq2d k=BABCk=ABCB
23 preq2 k=Bxk=xB
24 23 preq1d k=Bxkxl=xBxl
25 24 sseq1d k=BxkxlExBxlE
26 25 reubidv k=B∃!xABCxkxlE∃!xABCxBxlE
27 22 26 raleqbidv k=BlABCk∃!xABCxkxlElABCB∃!xABCxBxlE
28 sneq k=Ck=C
29 28 difeq2d k=CABCk=ABCC
30 preq2 k=Cxk=xC
31 30 preq1d k=Cxkxl=xCxl
32 31 sseq1d k=CxkxlExCxlE
33 32 reubidv k=C∃!xABCxkxlE∃!xABCxCxlE
34 29 33 raleqbidv k=ClABCk∃!xABCxkxlElABCC∃!xABCxCxlE
35 20 27 34 raltpg AXBYCZkABClABCk∃!xABCxkxlElABCA∃!xABCxAxlElABCB∃!xABCxBxlElABCC∃!xABCxCxlE
36 35 ad2antrr AXBYCZABACBCV=ABCGUSGraphkABClABCk∃!xABCxkxlElABCA∃!xABCxAxlElABCB∃!xABCxBxlElABCC∃!xABCxCxlE
37 tprot ABC=BCA
38 37 a1i ABACBCABC=BCA
39 38 difeq1d ABACBCABCA=BCAA
40 necom ABBA
41 40 biimpi ABBA
42 necom ACCA
43 42 biimpi ACCA
44 41 43 anim12i ABACBACA
45 44 3adant3 ABACBCBACA
46 diftpsn3 BACABCAA=BC
47 45 46 syl ABACBCBCAA=BC
48 39 47 eqtrd ABACBCABCA=BC
49 48 raleqdv ABACBClABCA∃!xABCxAxlElBC∃!xABCxAxlE
50 tprot CAB=ABC
51 50 eqcomi ABC=CAB
52 51 a1i ABACBCABC=CAB
53 52 difeq1d ABACBCABCB=CABB
54 id ABAB
55 necom BCCB
56 55 biimpi BCCB
57 54 56 anim12ci ABBCCBAB
58 57 3adant2 ABACBCCBAB
59 diftpsn3 CBABCABB=CA
60 58 59 syl ABACBCCABB=CA
61 53 60 eqtrd ABACBCABCB=CA
62 61 raleqdv ABACBClABCB∃!xABCxBxlElCA∃!xABCxBxlE
63 diftpsn3 ACBCABCC=AB
64 63 3adant1 ABACBCABCC=AB
65 64 raleqdv ABACBClABCC∃!xABCxCxlElAB∃!xABCxCxlE
66 49 62 65 3anbi123d ABACBClABCA∃!xABCxAxlElABCB∃!xABCxBxlElABCC∃!xABCxCxlElBC∃!xABCxAxlElCA∃!xABCxBxlElAB∃!xABCxCxlE
67 66 ad2antlr AXBYCZABACBCV=ABCGUSGraphlABCA∃!xABCxAxlElABCB∃!xABCxBxlElABCC∃!xABCxCxlElBC∃!xABCxAxlElCA∃!xABCxBxlElAB∃!xABCxCxlE
68 preq2 l=Bxl=xB
69 68 preq2d l=BxAxl=xAxB
70 69 sseq1d l=BxAxlExAxBE
71 70 reubidv l=B∃!xABCxAxlE∃!xABCxAxBE
72 preq2 l=Cxl=xC
73 72 preq2d l=CxAxl=xAxC
74 73 sseq1d l=CxAxlExAxCE
75 74 reubidv l=C∃!xABCxAxlE∃!xABCxAxCE
76 71 75 ralprg BYCZlBC∃!xABCxAxlE∃!xABCxAxBE∃!xABCxAxCE
77 76 3adant1 AXBYCZlBC∃!xABCxAxlE∃!xABCxAxBE∃!xABCxAxCE
78 72 preq2d l=CxBxl=xBxC
79 78 sseq1d l=CxBxlExBxCE
80 79 reubidv l=C∃!xABCxBxlE∃!xABCxBxCE
81 preq2 l=Axl=xA
82 81 preq2d l=AxBxl=xBxA
83 82 sseq1d l=AxBxlExBxAE
84 83 reubidv l=A∃!xABCxBxlE∃!xABCxBxAE
85 80 84 ralprg CZAXlCA∃!xABCxBxlE∃!xABCxBxCE∃!xABCxBxAE
86 85 ancoms AXCZlCA∃!xABCxBxlE∃!xABCxBxCE∃!xABCxBxAE
87 86 3adant2 AXBYCZlCA∃!xABCxBxlE∃!xABCxBxCE∃!xABCxBxAE
88 81 preq2d l=AxCxl=xCxA
89 88 sseq1d l=AxCxlExCxAE
90 89 reubidv l=A∃!xABCxCxlE∃!xABCxCxAE
91 68 preq2d l=BxCxl=xCxB
92 91 sseq1d l=BxCxlExCxBE
93 92 reubidv l=B∃!xABCxCxlE∃!xABCxCxBE
94 90 93 ralprg AXBYlAB∃!xABCxCxlE∃!xABCxCxAE∃!xABCxCxBE
95 94 3adant3 AXBYCZlAB∃!xABCxCxlE∃!xABCxCxAE∃!xABCxCxBE
96 77 87 95 3anbi123d AXBYCZlBC∃!xABCxAxlElCA∃!xABCxBxlElAB∃!xABCxCxlE∃!xABCxAxBE∃!xABCxAxCE∃!xABCxBxCE∃!xABCxBxAE∃!xABCxCxAE∃!xABCxCxBE
97 96 ad2antrr AXBYCZABACBCV=ABCGUSGraphlBC∃!xABCxAxlElCA∃!xABCxBxlElAB∃!xABCxCxlE∃!xABCxAxBE∃!xABCxAxCE∃!xABCxBxCE∃!xABCxBxAE∃!xABCxCxAE∃!xABCxCxBE
98 36 67 97 3bitrd AXBYCZABACBCV=ABCGUSGraphkABClABCk∃!xABCxkxlE∃!xABCxAxBE∃!xABCxAxCE∃!xABCxBxCE∃!xABCxBxAE∃!xABCxCxAE∃!xABCxCxBE
99 1 2 frgr3vlem2 AXBYCZABACBCV=ABCGUSGraph∃!xABCxAxBECAECBE
100 99 imp AXBYCZABACBCV=ABCGUSGraph∃!xABCxAxBECAECBE
101 simpll1 AXBYCZABACBCV=ABCGUSGraphAX
102 simpll3 AXBYCZABACBCV=ABCGUSGraphCZ
103 simpll2 AXBYCZABACBCV=ABCGUSGraphBY
104 101 102 103 3jca AXBYCZABACBCV=ABCGUSGraphAXCZBY
105 simplr2 AXBYCZABACBCV=ABCGUSGraphAC
106 simplr1 AXBYCZABACBCV=ABCGUSGraphAB
107 58 simpld ABACBCCB
108 107 ad2antlr AXBYCZABACBCV=ABCGUSGraphCB
109 105 106 108 3jca AXBYCZABACBCV=ABCGUSGraphACABCB
110 tpcomb ABC=ACB
111 5 110 eqtrdi V=ABCV=ACB
112 111 anim1i V=ABCGUSGraphV=ACBGUSGraph
113 112 adantl AXBYCZABACBCV=ABCGUSGraphV=ACBGUSGraph
114 reueq1 ABC=ACB∃!xABCxAxCE∃!xACBxAxCE
115 110 114 mp1i AXCZBYACABCBV=ACBGUSGraph∃!xABCxAxCE∃!xACBxAxCE
116 1 2 frgr3vlem2 AXCZBYACABCBV=ACBGUSGraph∃!xACBxAxCEBAEBCE
117 116 imp AXCZBYACABCBV=ACBGUSGraph∃!xACBxAxCEBAEBCE
118 115 117 bitrd AXCZBYACABCBV=ACBGUSGraph∃!xABCxAxCEBAEBCE
119 104 109 113 118 syl21anc AXBYCZABACBCV=ABCGUSGraph∃!xABCxAxCEBAEBCE
120 100 119 anbi12d AXBYCZABACBCV=ABCGUSGraph∃!xABCxAxBE∃!xABCxAxCECAECBEBAEBCE
121 103 102 101 3jca AXBYCZABACBCV=ABCGUSGraphBYCZAX
122 simplr3 AXBYCZABACBCV=ABCGUSGraphBC
123 106 necomd AXBYCZABACBCV=ABCGUSGraphBA
124 105 necomd AXBYCZABACBCV=ABCGUSGraphCA
125 122 123 124 3jca AXBYCZABACBCV=ABCGUSGraphBCBACA
126 37 eqeq2i V=ABCV=BCA
127 126 biimpi V=ABCV=BCA
128 127 anim1i V=ABCGUSGraphV=BCAGUSGraph
129 128 adantl AXBYCZABACBCV=ABCGUSGraphV=BCAGUSGraph
130 reueq1 ABC=BCA∃!xABCxBxCE∃!xBCAxBxCE
131 37 130 mp1i BYCZAXBCBACAV=BCAGUSGraph∃!xABCxBxCE∃!xBCAxBxCE
132 1 2 frgr3vlem2 BYCZAXBCBACAV=BCAGUSGraph∃!xBCAxBxCEABEACE
133 132 imp BYCZAXBCBACAV=BCAGUSGraph∃!xBCAxBxCEABEACE
134 131 133 bitrd BYCZAXBCBACAV=BCAGUSGraph∃!xABCxBxCEABEACE
135 121 125 129 134 syl21anc AXBYCZABACBCV=ABCGUSGraph∃!xABCxBxCEABEACE
136 103 101 102 3jca AXBYCZABACBCV=ABCGUSGraphBYAXCZ
137 123 122 105 3jca AXBYCZABACBCV=ABCGUSGraphBABCAC
138 tpcoma ABC=BAC
139 138 eqeq2i V=ABCV=BAC
140 139 biimpi V=ABCV=BAC
141 140 anim1i V=ABCGUSGraphV=BACGUSGraph
142 141 adantl AXBYCZABACBCV=ABCGUSGraphV=BACGUSGraph
143 reueq1 ABC=BAC∃!xABCxBxAE∃!xBACxBxAE
144 138 143 mp1i BYAXCZBABCACV=BACGUSGraph∃!xABCxBxAE∃!xBACxBxAE
145 1 2 frgr3vlem2 BYAXCZBABCACV=BACGUSGraph∃!xBACxBxAECBECAE
146 145 imp BYAXCZBABCACV=BACGUSGraph∃!xBACxBxAECBECAE
147 144 146 bitrd BYAXCZBABCACV=BACGUSGraph∃!xABCxBxAECBECAE
148 136 137 142 147 syl21anc AXBYCZABACBCV=ABCGUSGraph∃!xABCxBxAECBECAE
149 135 148 anbi12d AXBYCZABACBCV=ABCGUSGraph∃!xABCxBxCE∃!xABCxBxAEABEACECBECAE
150 102 101 103 3jca AXBYCZABACBCV=ABCGUSGraphCZAXBY
151 124 108 106 3jca AXBYCZABACBCV=ABCGUSGraphCACBAB
152 51 eqeq2i V=ABCV=CAB
153 152 biimpi V=ABCV=CAB
154 153 anim1i V=ABCGUSGraphV=CABGUSGraph
155 154 adantl AXBYCZABACBCV=ABCGUSGraphV=CABGUSGraph
156 reueq1 ABC=CAB∃!xABCxCxAE∃!xCABxCxAE
157 51 156 mp1i CZAXBYCACBABV=CABGUSGraph∃!xABCxCxAE∃!xCABxCxAE
158 1 2 frgr3vlem2 CZAXBYCACBABV=CABGUSGraph∃!xCABxCxAEBCEBAE
159 158 imp CZAXBYCACBABV=CABGUSGraph∃!xCABxCxAEBCEBAE
160 157 159 bitrd CZAXBYCACBABV=CABGUSGraph∃!xABCxCxAEBCEBAE
161 150 151 155 160 syl21anc AXBYCZABACBCV=ABCGUSGraph∃!xABCxCxAEBCEBAE
162 3anrev AXBYCZCZBYAX
163 162 biimpi AXBYCZCZBYAX
164 55 42 40 3anbi123i BCACABCBCABA
165 164 biimpi BCACABCBCABA
166 165 3com13 ABACBCCBCABA
167 163 166 anim12i AXBYCZABACBCCZBYAXCBCABA
168 tpcoma BCA=CBA
169 37 168 eqtri ABC=CBA
170 169 eqeq2i V=ABCV=CBA
171 170 biimpi V=ABCV=CBA
172 171 anim1i V=ABCGUSGraphV=CBAGUSGraph
173 reueq1 ABC=CBA∃!xABCxCxBE∃!xCBAxCxBE
174 169 173 mp1i CZBYAXCBCABAV=CBAGUSGraph∃!xABCxCxBE∃!xCBAxCxBE
175 1 2 frgr3vlem2 CZBYAXCBCABAV=CBAGUSGraph∃!xCBAxCxBEACEABE
176 175 imp CZBYAXCBCABAV=CBAGUSGraph∃!xCBAxCxBEACEABE
177 174 176 bitrd CZBYAXCBCABAV=CBAGUSGraph∃!xABCxCxBEACEABE
178 167 172 177 syl2an AXBYCZABACBCV=ABCGUSGraph∃!xABCxCxBEACEABE
179 161 178 anbi12d AXBYCZABACBCV=ABCGUSGraph∃!xABCxCxAE∃!xABCxCxBEBCEBAEACEABE
180 120 149 179 3anbi123d AXBYCZABACBCV=ABCGUSGraph∃!xABCxAxBE∃!xABCxAxCE∃!xABCxBxCE∃!xABCxBxAE∃!xABCxCxAE∃!xABCxCxBECAECBEBAEBCEABEACECBECAEBCEBAEACEABE
181 prcom BC=CB
182 181 eleq1i BCECBE
183 182 anbi2i BAEBCEBAECBE
184 183 anbi2i CAECBEBAEBCECAECBEBAECBE
185 anandir CAEBAECBECAECBEBAECBE
186 184 185 bitr4i CAECBEBAEBCECAEBAECBE
187 prcom CA=AC
188 187 eleq1i CAEACE
189 188 anbi2i CBECAECBEACE
190 189 anbi2i ABEACECBECAEABEACECBEACE
191 anandir ABECBEACEABEACECBEACE
192 190 191 bitr4i ABEACECBECAEABECBEACE
193 prcom AB=BA
194 193 eleq1i ABEBAE
195 194 anbi2i ACEABEACEBAE
196 195 anbi2i BCEBAEACEABEBCEBAEACEBAE
197 anandir BCEACEBAEBCEBAEACEBAE
198 196 197 bitr4i BCEBAEACEABEBCEACEBAE
199 186 192 198 3anbi123i CAECBEBAEBCEABEACECBECAEBCEBAEACEABECAEBAECBEABECBEACEBCEACEBAE
200 3anrot CAEBAECBEBAECBECAE
201 df-3an CAEBAECBECAEBAECBE
202 prcom BA=AB
203 202 eleq1i BAEABE
204 prcom CB=BC
205 204 eleq1i CBEBCE
206 biid CAECAE
207 203 205 206 3anbi123i BAECBECAEABEBCECAE
208 200 201 207 3bitr3i CAEBAECBEABEBCECAE
209 df-3an ABECBEACEABECBEACE
210 biid ABEABE
211 prcom AC=CA
212 211 eleq1i ACECAE
213 210 205 212 3anbi123i ABECBEACEABEBCECAE
214 209 213 bitr3i ABECBEACEABEBCECAE
215 df-3an BCEACEBAEBCEACEBAE
216 3anrot BCEACEBAEACEBAEBCE
217 3anrot ACEBAEBCEBAEBCEACE
218 biid BCEBCE
219 203 218 212 3anbi123i BAEBCEACEABEBCECAE
220 216 217 219 3bitri BCEACEBAEABEBCECAE
221 215 220 bitr3i BCEACEBAEABEBCECAE
222 208 214 221 3anbi123i CAEBAECBEABECBEACEBCEACEBAEABEBCECAEABEBCECAEABEBCECAE
223 df-3an ABEBCECAEABEBCECAEABEBCECAEABEBCECAEABEBCECAEABEBCECAE
224 anabs1 ABEBCECAEABEBCECAEABEBCECAEABEBCECAEABEBCECAE
225 anidm ABEBCECAEABEBCECAEABEBCECAE
226 223 224 225 3bitri ABEBCECAEABEBCECAEABEBCECAEABEBCECAE
227 199 222 226 3bitri CAECBEBAEBCEABEACECBECAEBCEBAEACEABEABEBCECAE
228 180 227 bitrdi AXBYCZABACBCV=ABCGUSGraph∃!xABCxAxBE∃!xABCxAxCE∃!xABCxBxCE∃!xABCxBxAE∃!xABCxCxAE∃!xABCxCxBEABEBCECAE
229 13 98 228 3bitrd AXBYCZABACBCV=ABCGUSGraphGFriendGraphABEBCECAE
230 229 ex AXBYCZABACBCV=ABCGUSGraphGFriendGraphABEBCECAE