Metamath Proof Explorer


Theorem frrlem13

Description: Lemma for well-founded recursion. Assuming that S is a subset of A and that z is R -minimal, then C is an acceptable function. (Contributed by Scott Fenton, 7-Dec-2022)

Ref Expression
Hypotheses frrlem11.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
frrlem11.2 F = frecs R A G
frrlem11.3 φ g B h B x g u x h v u = v
frrlem11.4 C = F S z z G F Pred R A z
frrlem12.5 φ R Fr A
frrlem12.6 φ z A Pred R A z S
frrlem12.7 φ z A w S Pred R A w S
frrlem13.8 φ z A S V
frrlem13.9 φ z A S A
Assertion frrlem13 φ z A dom F Pred R A dom F z = C B

Proof

Step Hyp Ref Expression
1 frrlem11.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
2 frrlem11.2 F = frecs R A G
3 frrlem11.3 φ g B h B x g u x h v u = v
4 frrlem11.4 C = F S z z G F Pred R A z
5 frrlem12.5 φ R Fr A
6 frrlem12.6 φ z A Pred R A z S
7 frrlem12.7 φ z A w S Pred R A w S
8 frrlem13.8 φ z A S V
9 frrlem13.9 φ z A S A
10 eldifi z A dom F z A
11 10 8 sylan2 φ z A dom F S V
12 11 adantrr φ z A dom F Pred R A dom F z = S V
13 inex1g S V S dom F V
14 snex z V
15 unexg S dom F V z V S dom F z V
16 13 14 15 sylancl S V S dom F z V
17 12 16 syl φ z A dom F Pred R A dom F z = S dom F z V
18 1 2 3 4 frrlem11 φ z A dom F C Fn S dom F z
19 18 adantrr φ z A dom F Pred R A dom F z = C Fn S dom F z
20 inss1 S dom F S
21 10 9 sylan2 φ z A dom F S A
22 21 adantrr φ z A dom F Pred R A dom F z = S A
23 20 22 sstrid φ z A dom F Pred R A dom F z = S dom F A
24 10 adantl φ z A dom F z A
25 24 adantrr φ z A dom F Pred R A dom F z = z A
26 25 snssd φ z A dom F Pred R A dom F z = z A
27 23 26 unssd φ z A dom F Pred R A dom F z = S dom F z A
28 elun w S dom F z w S dom F w z
29 elin w S dom F w S w dom F
30 velsn w z w = z
31 29 30 orbi12i w S dom F w z w S w dom F w = z
32 28 31 bitri w S dom F z w S w dom F w = z
33 10 7 sylan2 φ z A dom F w S Pred R A w S
34 33 adantrr φ z A dom F Pred R A dom F z = w S Pred R A w S
35 rsp w S Pred R A w S w S Pred R A w S
36 34 35 syl φ z A dom F Pred R A dom F z = w S Pred R A w S
37 1 2 frrlem8 w dom F Pred R A w dom F
38 36 37 anim12d1 φ z A dom F Pred R A dom F z = w S w dom F Pred R A w S Pred R A w dom F
39 ssin Pred R A w S Pred R A w dom F Pred R A w S dom F
40 38 39 syl6ib φ z A dom F Pred R A dom F z = w S w dom F Pred R A w S dom F
41 10 6 sylan2 φ z A dom F Pred R A z S
42 41 adantrr φ z A dom F Pred R A dom F z = Pred R A z S
43 preddif Pred R A dom F z = Pred R A z Pred R dom F z
44 43 eqeq1i Pred R A dom F z = Pred R A z Pred R dom F z =
45 ssdif0 Pred R A z Pred R dom F z Pred R A z Pred R dom F z =
46 44 45 sylbb2 Pred R A dom F z = Pred R A z Pred R dom F z
47 predss Pred R dom F z dom F
48 46 47 sstrdi Pred R A dom F z = Pred R A z dom F
49 48 adantl z A dom F Pred R A dom F z = Pred R A z dom F
50 49 adantl φ z A dom F Pred R A dom F z = Pred R A z dom F
51 42 50 ssind φ z A dom F Pred R A dom F z = Pred R A z S dom F
52 predeq3 w = z Pred R A w = Pred R A z
53 52 sseq1d w = z Pred R A w S dom F Pred R A z S dom F
54 51 53 syl5ibrcom φ z A dom F Pred R A dom F z = w = z Pred R A w S dom F
55 40 54 jaod φ z A dom F Pred R A dom F z = w S w dom F w = z Pred R A w S dom F
56 32 55 syl5bi φ z A dom F Pred R A dom F z = w S dom F z Pred R A w S dom F
57 56 imp φ z A dom F Pred R A dom F z = w S dom F z Pred R A w S dom F
58 ssun1 S dom F S dom F z
59 57 58 sstrdi φ z A dom F Pred R A dom F z = w S dom F z Pred R A w S dom F z
60 59 ralrimiva φ z A dom F Pred R A dom F z = w S dom F z Pred R A w S dom F z
61 27 60 jca φ z A dom F Pred R A dom F z = S dom F z A w S dom F z Pred R A w S dom F z
62 1 2 3 4 5 6 7 frrlem12 φ z A dom F w S dom F z C w = w G C Pred R A w
63 62 3expa φ z A dom F w S dom F z C w = w G C Pred R A w
64 63 ralrimiva φ z A dom F w S dom F z C w = w G C Pred R A w
65 64 adantrr φ z A dom F Pred R A dom F z = w S dom F z C w = w G C Pred R A w
66 fneq2 t = S dom F z C Fn t C Fn S dom F z
67 sseq1 t = S dom F z t A S dom F z A
68 sseq2 t = S dom F z Pred R A w t Pred R A w S dom F z
69 68 raleqbi1dv t = S dom F z w t Pred R A w t w S dom F z Pred R A w S dom F z
70 67 69 anbi12d t = S dom F z t A w t Pred R A w t S dom F z A w S dom F z Pred R A w S dom F z
71 raleq t = S dom F z w t C w = w G C Pred R A w w S dom F z C w = w G C Pred R A w
72 66 70 71 3anbi123d t = S dom F z C Fn t t A w t Pred R A w t w t C w = w G C Pred R A w C Fn S dom F z S dom F z A w S dom F z Pred R A w S dom F z w S dom F z C w = w G C Pred R A w
73 72 spcegv S dom F z V C Fn S dom F z S dom F z A w S dom F z Pred R A w S dom F z w S dom F z C w = w G C Pred R A w t C Fn t t A w t Pred R A w t w t C w = w G C Pred R A w
74 73 imp S dom F z V C Fn S dom F z S dom F z A w S dom F z Pred R A w S dom F z w S dom F z C w = w G C Pred R A w t C Fn t t A w t Pred R A w t w t C w = w G C Pred R A w
75 17 19 61 65 74 syl13anc φ z A dom F Pred R A dom F z = t C Fn t t A w t Pred R A w t w t C w = w G C Pred R A w
76 1 2 3 frrlem9 φ Fun F
77 resfunexg Fun F S V F S V
78 76 12 77 syl2an2r φ z A dom F Pred R A dom F z = F S V
79 snex z z G F Pred R A z V
80 unexg F S V z z G F Pred R A z V F S z z G F Pred R A z V
81 78 79 80 sylancl φ z A dom F Pred R A dom F z = F S z z G F Pred R A z V
82 4 81 eqeltrid φ z A dom F Pred R A dom F z = C V
83 fneq1 c = C c Fn t C Fn t
84 fveq1 c = C c w = C w
85 reseq1 c = C c Pred R A w = C Pred R A w
86 85 oveq2d c = C w G c Pred R A w = w G C Pred R A w
87 84 86 eqeq12d c = C c w = w G c Pred R A w C w = w G C Pred R A w
88 87 ralbidv c = C w t c w = w G c Pred R A w w t C w = w G C Pred R A w
89 83 88 3anbi13d c = C c Fn t t A w t Pred R A w t w t c w = w G c Pred R A w C Fn t t A w t Pred R A w t w t C w = w G C Pred R A w
90 89 exbidv c = C t c Fn t t A w t Pred R A w t w t c w = w G c Pred R A w t C Fn t t A w t Pred R A w t w t C w = w G C Pred R A w
91 1 frrlem1 B = c | t c Fn t t A w t Pred R A w t w t c w = w G c Pred R A w
92 90 91 elab2g C V C B t C Fn t t A w t Pred R A w t w t C w = w G C Pred R A w
93 82 92 syl φ z A dom F Pred R A dom F z = C B t C Fn t t A w t Pred R A w t w t C w = w G C Pred R A w
94 75 93 mpbird φ z A dom F Pred R A dom F z = C B