Metamath Proof Explorer


Theorem frrlem13

Description: Lemma for well-founded recursion. Assuming that S is a subset of A and that z is R -minimal, then C is an acceptable function. (Contributed by Scott Fenton, 7-Dec-2022)

Ref Expression
Hypotheses frrlem11.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
frrlem11.2 F=frecsRAG
frrlem11.3 φgBhBxguxhvu=v
frrlem11.4 C=FSzzGFPredRAz
frrlem12.5 φRFrA
frrlem12.6 φzAPredRAzS
frrlem12.7 φzAwSPredRAwS
frrlem13.8 φzASV
frrlem13.9 φzASA
Assertion frrlem13 φzAdomFPredRAdomFz=CB

Proof

Step Hyp Ref Expression
1 frrlem11.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
2 frrlem11.2 F=frecsRAG
3 frrlem11.3 φgBhBxguxhvu=v
4 frrlem11.4 C=FSzzGFPredRAz
5 frrlem12.5 φRFrA
6 frrlem12.6 φzAPredRAzS
7 frrlem12.7 φzAwSPredRAwS
8 frrlem13.8 φzASV
9 frrlem13.9 φzASA
10 eldifi zAdomFzA
11 10 8 sylan2 φzAdomFSV
12 11 adantrr φzAdomFPredRAdomFz=SV
13 inex1g SVSdomFV
14 snex zV
15 unexg SdomFVzVSdomFzV
16 13 14 15 sylancl SVSdomFzV
17 12 16 syl φzAdomFPredRAdomFz=SdomFzV
18 1 2 3 4 frrlem11 φzAdomFCFnSdomFz
19 18 adantrr φzAdomFPredRAdomFz=CFnSdomFz
20 inss1 SdomFS
21 10 9 sylan2 φzAdomFSA
22 21 adantrr φzAdomFPredRAdomFz=SA
23 20 22 sstrid φzAdomFPredRAdomFz=SdomFA
24 10 adantl φzAdomFzA
25 24 adantrr φzAdomFPredRAdomFz=zA
26 25 snssd φzAdomFPredRAdomFz=zA
27 23 26 unssd φzAdomFPredRAdomFz=SdomFzA
28 elun wSdomFzwSdomFwz
29 elin wSdomFwSwdomF
30 velsn wzw=z
31 29 30 orbi12i wSdomFwzwSwdomFw=z
32 28 31 bitri wSdomFzwSwdomFw=z
33 10 7 sylan2 φzAdomFwSPredRAwS
34 33 adantrr φzAdomFPredRAdomFz=wSPredRAwS
35 rsp wSPredRAwSwSPredRAwS
36 34 35 syl φzAdomFPredRAdomFz=wSPredRAwS
37 1 2 frrlem8 wdomFPredRAwdomF
38 36 37 anim12d1 φzAdomFPredRAdomFz=wSwdomFPredRAwSPredRAwdomF
39 ssin PredRAwSPredRAwdomFPredRAwSdomF
40 38 39 imbitrdi φzAdomFPredRAdomFz=wSwdomFPredRAwSdomF
41 10 6 sylan2 φzAdomFPredRAzS
42 41 adantrr φzAdomFPredRAdomFz=PredRAzS
43 preddif PredRAdomFz=PredRAzPredRdomFz
44 43 eqeq1i PredRAdomFz=PredRAzPredRdomFz=
45 ssdif0 PredRAzPredRdomFzPredRAzPredRdomFz=
46 44 45 sylbb2 PredRAdomFz=PredRAzPredRdomFz
47 predss PredRdomFzdomF
48 46 47 sstrdi PredRAdomFz=PredRAzdomF
49 48 adantl zAdomFPredRAdomFz=PredRAzdomF
50 49 adantl φzAdomFPredRAdomFz=PredRAzdomF
51 42 50 ssind φzAdomFPredRAdomFz=PredRAzSdomF
52 predeq3 w=zPredRAw=PredRAz
53 52 sseq1d w=zPredRAwSdomFPredRAzSdomF
54 51 53 syl5ibrcom φzAdomFPredRAdomFz=w=zPredRAwSdomF
55 40 54 jaod φzAdomFPredRAdomFz=wSwdomFw=zPredRAwSdomF
56 32 55 biimtrid φzAdomFPredRAdomFz=wSdomFzPredRAwSdomF
57 56 imp φzAdomFPredRAdomFz=wSdomFzPredRAwSdomF
58 ssun1 SdomFSdomFz
59 57 58 sstrdi φzAdomFPredRAdomFz=wSdomFzPredRAwSdomFz
60 59 ralrimiva φzAdomFPredRAdomFz=wSdomFzPredRAwSdomFz
61 27 60 jca φzAdomFPredRAdomFz=SdomFzAwSdomFzPredRAwSdomFz
62 1 2 3 4 5 6 7 frrlem12 φzAdomFwSdomFzCw=wGCPredRAw
63 62 3expa φzAdomFwSdomFzCw=wGCPredRAw
64 63 ralrimiva φzAdomFwSdomFzCw=wGCPredRAw
65 64 adantrr φzAdomFPredRAdomFz=wSdomFzCw=wGCPredRAw
66 fneq2 t=SdomFzCFntCFnSdomFz
67 sseq1 t=SdomFztASdomFzA
68 sseq2 t=SdomFzPredRAwtPredRAwSdomFz
69 68 raleqbi1dv t=SdomFzwtPredRAwtwSdomFzPredRAwSdomFz
70 67 69 anbi12d t=SdomFztAwtPredRAwtSdomFzAwSdomFzPredRAwSdomFz
71 raleq t=SdomFzwtCw=wGCPredRAwwSdomFzCw=wGCPredRAw
72 66 70 71 3anbi123d t=SdomFzCFnttAwtPredRAwtwtCw=wGCPredRAwCFnSdomFzSdomFzAwSdomFzPredRAwSdomFzwSdomFzCw=wGCPredRAw
73 72 spcegv SdomFzVCFnSdomFzSdomFzAwSdomFzPredRAwSdomFzwSdomFzCw=wGCPredRAwtCFnttAwtPredRAwtwtCw=wGCPredRAw
74 73 imp SdomFzVCFnSdomFzSdomFzAwSdomFzPredRAwSdomFzwSdomFzCw=wGCPredRAwtCFnttAwtPredRAwtwtCw=wGCPredRAw
75 17 19 61 65 74 syl13anc φzAdomFPredRAdomFz=tCFnttAwtPredRAwtwtCw=wGCPredRAw
76 1 2 3 frrlem9 φFunF
77 resfunexg FunFSVFSV
78 76 12 77 syl2an2r φzAdomFPredRAdomFz=FSV
79 snex zzGFPredRAzV
80 unexg FSVzzGFPredRAzVFSzzGFPredRAzV
81 78 79 80 sylancl φzAdomFPredRAdomFz=FSzzGFPredRAzV
82 4 81 eqeltrid φzAdomFPredRAdomFz=CV
83 fneq1 c=CcFntCFnt
84 fveq1 c=Ccw=Cw
85 reseq1 c=CcPredRAw=CPredRAw
86 85 oveq2d c=CwGcPredRAw=wGCPredRAw
87 84 86 eqeq12d c=Ccw=wGcPredRAwCw=wGCPredRAw
88 87 ralbidv c=Cwtcw=wGcPredRAwwtCw=wGCPredRAw
89 83 88 3anbi13d c=CcFnttAwtPredRAwtwtcw=wGcPredRAwCFnttAwtPredRAwtwtCw=wGCPredRAw
90 89 exbidv c=CtcFnttAwtPredRAwtwtcw=wGcPredRAwtCFnttAwtPredRAwtwtCw=wGCPredRAw
91 1 frrlem1 B=c|tcFnttAwtPredRAwtwtcw=wGcPredRAw
92 90 91 elab2g CVCBtCFnttAwtPredRAwtwtCw=wGCPredRAw
93 82 92 syl φzAdomFPredRAdomFz=CBtCFnttAwtPredRAwtwtCw=wGCPredRAw
94 75 93 mpbird φzAdomFPredRAdomFz=CB