Metamath Proof Explorer


Theorem fsumdvdscom

Description: A double commutation of divisor sums based on fsumdvdsdiag . Note that A depends on both j and k . (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Hypotheses fsumdvdscom.1 φN
fsumdvdscom.2 j=kmA=B
fsumdvdscom.3 φjx|xNkx|xjA
Assertion fsumdvdscom φjx|xNkx|xjA=kx|xNmx|xNkB

Proof

Step Hyp Ref Expression
1 fsumdvdscom.1 φN
2 fsumdvdscom.2 j=kmA=B
3 fsumdvdscom.3 φjx|xNkx|xjA
4 nfcv _ukx|xjA
5 nfcv _jx|xu
6 nfcsb1v _ju/jA
7 5 6 nfsum _jkx|xuu/jA
8 breq2 j=uxjxu
9 8 rabbidv j=ux|xj=x|xu
10 csbeq1a j=uA=u/jA
11 10 adantr j=ukx|xjA=u/jA
12 9 11 sumeq12dv j=ukx|xjA=kx|xuu/jA
13 4 7 12 cbvsumi jx|xNkx|xjA=ux|xNkx|xuu/jA
14 breq2 u=NvxuxNv
15 14 rabbidv u=Nvx|xu=x|xNv
16 csbeq1 u=Nvu/jA=Nv/jA
17 16 adantr u=Nvkx|xuu/jA=Nv/jA
18 15 17 sumeq12dv u=Nvkx|xuu/jA=kx|xNvNv/jA
19 fzfid φ1NFin
20 dvdsssfz1 Nx|xN1N
21 1 20 syl φx|xN1N
22 19 21 ssfid φx|xNFin
23 eqid x|xN=x|xN
24 eqid zx|xNNz=zx|xNNz
25 23 24 dvdsflip Nzx|xNNz:x|xN1-1 ontox|xN
26 1 25 syl φzx|xNNz:x|xN1-1 ontox|xN
27 oveq2 z=vNz=Nv
28 ovex NzV
29 27 24 28 fvmpt3i vx|xNzx|xNNzv=Nv
30 29 adantl φvx|xNzx|xNNzv=Nv
31 fzfid φux|xN1uFin
32 ssrab2 x|xN
33 simpr φux|xNux|xN
34 32 33 sselid φux|xNu
35 dvdsssfz1 ux|xu1u
36 34 35 syl φux|xNx|xu1u
37 31 36 ssfid φux|xNx|xuFin
38 3 ralrimivva φjx|xNkx|xjA
39 nfv ukx|xjA
40 6 nfel1 ju/jA
41 5 40 nfralw jkx|xuu/jA
42 10 eleq1d j=uAu/jA
43 9 42 raleqbidv j=ukx|xjAkx|xuu/jA
44 39 41 43 cbvralw jx|xNkx|xjAux|xNkx|xuu/jA
45 38 44 sylib φux|xNkx|xuu/jA
46 45 r19.21bi φux|xNkx|xuu/jA
47 46 r19.21bi φux|xNkx|xuu/jA
48 37 47 fsumcl φux|xNkx|xuu/jA
49 18 22 26 30 48 fsumf1o φux|xNkx|xuu/jA=vx|xNkx|xNvNv/jA
50 16 eleq1d u=Nvu/jANv/jA
51 15 50 raleqbidv u=Nvkx|xuu/jAkx|xNvNv/jA
52 45 adantr φvx|xNux|xNkx|xuu/jA
53 dvdsdivcl Nvx|xNNvx|xN
54 1 53 sylan φvx|xNNvx|xN
55 51 52 54 rspcdva φvx|xNkx|xNvNv/jA
56 55 r19.21bi φvx|xNkx|xNvNv/jA
57 56 anasss φvx|xNkx|xNvNv/jA
58 1 57 fsumdvdsdiag φvx|xNkx|xNvNv/jA=kx|xNvx|xNkNv/jA
59 oveq2 v=NkmNv=NNkm
60 59 csbeq1d v=NkmNv/jA=NNkm/jA
61 fzfid φkx|xN1NkFin
62 dvdsdivcl Nkx|xNNkx|xN
63 32 62 sselid Nkx|xNNk
64 1 63 sylan φkx|xNNk
65 dvdsssfz1 Nkx|xNk1Nk
66 64 65 syl φkx|xNx|xNk1Nk
67 61 66 ssfid φkx|xNx|xNkFin
68 eqid x|xNk=x|xNk
69 eqid zx|xNkNkz=zx|xNkNkz
70 68 69 dvdsflip Nkzx|xNkNkz:x|xNk1-1 ontox|xNk
71 64 70 syl φkx|xNzx|xNkNkz:x|xNk1-1 ontox|xNk
72 oveq2 z=mNkz=Nkm
73 ovex NkzV
74 72 69 73 fvmpt3i mx|xNkzx|xNkNkzm=Nkm
75 74 adantl φkx|xNmx|xNkzx|xNkNkzm=Nkm
76 1 fsumdvdsdiaglem φkx|xNvx|xNkvx|xNkx|xNv
77 57 ex φvx|xNkx|xNvNv/jA
78 76 77 syld φkx|xNvx|xNkNv/jA
79 78 impl φkx|xNvx|xNkNv/jA
80 60 67 71 75 79 fsumf1o φkx|xNvx|xNkNv/jA=mx|xNkNNkm/jA
81 ovexd φkx|xNmx|xNkNNkmV
82 nncn NN
83 nnne0 NN0
84 82 83 jca NNN0
85 1 84 syl φNN0
86 85 ad2antrr φkx|xNmx|xNkNN0
87 86 simpld φkx|xNmx|xNkN
88 elrabi kx|xNk
89 88 adantl φkx|xNk
90 89 adantr φkx|xNmx|xNkk
91 nncn kk
92 nnne0 kk0
93 91 92 jca kkk0
94 90 93 syl φkx|xNmx|xNkkk0
95 elrabi mx|xNkm
96 95 adantl φkx|xNmx|xNkm
97 nncn mm
98 nnne0 mm0
99 97 98 jca mmm0
100 96 99 syl φkx|xNmx|xNkmm0
101 divdiv1 Nkk0mm0Nkm=Nkm
102 87 94 100 101 syl3anc φkx|xNmx|xNkNkm=Nkm
103 102 oveq2d φkx|xNmx|xNkNNkm=NNkm
104 nnmulcl kmkm
105 89 95 104 syl2an φkx|xNmx|xNkkm
106 nncn kmkm
107 nnne0 kmkm0
108 106 107 jca kmkmkm0
109 105 108 syl φkx|xNmx|xNkkmkm0
110 ddcan NN0kmkm0NNkm=km
111 86 109 110 syl2anc φkx|xNmx|xNkNNkm=km
112 103 111 eqtrd φkx|xNmx|xNkNNkm=km
113 112 eqeq2d φkx|xNmx|xNkj=NNkmj=km
114 113 biimpa φkx|xNmx|xNkj=NNkmj=km
115 114 2 syl φkx|xNmx|xNkj=NNkmA=B
116 81 115 csbied φkx|xNmx|xNkNNkm/jA=B
117 116 sumeq2dv φkx|xNmx|xNkNNkm/jA=mx|xNkB
118 80 117 eqtrd φkx|xNvx|xNkNv/jA=mx|xNkB
119 118 sumeq2dv φkx|xNvx|xNkNv/jA=kx|xNmx|xNkB
120 49 58 119 3eqtrd φux|xNkx|xuu/jA=kx|xNmx|xNkB
121 13 120 eqtrid φjx|xNkx|xjA=kx|xNmx|xNkB