| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumrlim.1 |
|
| 2 |
|
fsumrlim.2 |
|
| 3 |
|
fsumrlim.3 |
|
| 4 |
|
fsumrlim.4 |
|
| 5 |
|
ssid |
|
| 6 |
|
sseq1 |
|
| 7 |
|
sumeq1 |
|
| 8 |
|
sum0 |
|
| 9 |
7 8
|
eqtrdi |
|
| 10 |
9
|
mpteq2dv |
|
| 11 |
|
sumeq1 |
|
| 12 |
|
sum0 |
|
| 13 |
11 12
|
eqtrdi |
|
| 14 |
10 13
|
breq12d |
|
| 15 |
6 14
|
imbi12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
sseq1 |
|
| 18 |
|
sumeq1 |
|
| 19 |
18
|
mpteq2dv |
|
| 20 |
|
sumeq1 |
|
| 21 |
19 20
|
breq12d |
|
| 22 |
17 21
|
imbi12d |
|
| 23 |
22
|
imbi2d |
|
| 24 |
|
sseq1 |
|
| 25 |
|
sumeq1 |
|
| 26 |
25
|
mpteq2dv |
|
| 27 |
|
sumeq1 |
|
| 28 |
26 27
|
breq12d |
|
| 29 |
24 28
|
imbi12d |
|
| 30 |
29
|
imbi2d |
|
| 31 |
|
sseq1 |
|
| 32 |
|
sumeq1 |
|
| 33 |
32
|
mpteq2dv |
|
| 34 |
|
sumeq1 |
|
| 35 |
33 34
|
breq12d |
|
| 36 |
31 35
|
imbi12d |
|
| 37 |
36
|
imbi2d |
|
| 38 |
|
0cn |
|
| 39 |
|
rlimconst |
|
| 40 |
1 38 39
|
sylancl |
|
| 41 |
40
|
a1d |
|
| 42 |
|
ssun1 |
|
| 43 |
|
sstr |
|
| 44 |
42 43
|
mpan |
|
| 45 |
44
|
imim1i |
|
| 46 |
|
sumex |
|
| 47 |
46
|
a1i |
|
| 48 |
|
simprr |
|
| 49 |
48
|
unssbd |
|
| 50 |
|
vex |
|
| 51 |
50
|
snss |
|
| 52 |
49 51
|
sylibr |
|
| 53 |
52
|
adantr |
|
| 54 |
3
|
anass1rs |
|
| 55 |
54 4
|
rlimmptrcl |
|
| 56 |
55
|
an32s |
|
| 57 |
56
|
adantllr |
|
| 58 |
57
|
ralrimiva |
|
| 59 |
|
nfcsb1v |
|
| 60 |
59
|
nfel1 |
|
| 61 |
|
csbeq1a |
|
| 62 |
61
|
eleq1d |
|
| 63 |
60 62
|
rspc |
|
| 64 |
53 58 63
|
sylc |
|
| 65 |
64
|
ralrimiva |
|
| 66 |
65
|
adantr |
|
| 67 |
|
nfcsb1v |
|
| 68 |
67
|
nfel1 |
|
| 69 |
|
csbeq1a |
|
| 70 |
69
|
eleq1d |
|
| 71 |
68 70
|
rspc |
|
| 72 |
66 71
|
mpan9 |
|
| 73 |
72
|
elexd |
|
| 74 |
|
nfcv |
|
| 75 |
|
nfcv |
|
| 76 |
|
nfcsb1v |
|
| 77 |
75 76
|
nfsum |
|
| 78 |
|
csbeq1a |
|
| 79 |
78
|
sumeq2sdv |
|
| 80 |
74 77 79
|
cbvmpt |
|
| 81 |
|
simpr |
|
| 82 |
80 81
|
eqbrtrrid |
|
| 83 |
|
nfcv |
|
| 84 |
83 67 69
|
cbvmpt |
|
| 85 |
4
|
ralrimiva |
|
| 86 |
85
|
adantr |
|
| 87 |
|
nfcv |
|
| 88 |
87 59
|
nfmpt |
|
| 89 |
|
nfcv |
|
| 90 |
|
nfcsb1v |
|
| 91 |
88 89 90
|
nfbr |
|
| 92 |
61
|
mpteq2dv |
|
| 93 |
|
csbeq1a |
|
| 94 |
92 93
|
breq12d |
|
| 95 |
91 94
|
rspc |
|
| 96 |
52 86 95
|
sylc |
|
| 97 |
96
|
adantr |
|
| 98 |
84 97
|
eqbrtrrid |
|
| 99 |
47 73 82 98
|
rlimadd |
|
| 100 |
|
simprl |
|
| 101 |
|
disjsn |
|
| 102 |
100 101
|
sylibr |
|
| 103 |
102
|
adantr |
|
| 104 |
|
eqidd |
|
| 105 |
2
|
adantr |
|
| 106 |
105 48
|
ssfid |
|
| 107 |
106
|
adantr |
|
| 108 |
48
|
sselda |
|
| 109 |
108
|
adantlr |
|
| 110 |
109 57
|
syldan |
|
| 111 |
103 104 107 110
|
fsumsplit |
|
| 112 |
|
csbeq1a |
|
| 113 |
|
nfcv |
|
| 114 |
|
nfcsb1v |
|
| 115 |
112 113 114
|
cbvsum |
|
| 116 |
|
csbeq1 |
|
| 117 |
116
|
sumsn |
|
| 118 |
53 64 117
|
syl2anc |
|
| 119 |
115 118
|
eqtrid |
|
| 120 |
119
|
oveq2d |
|
| 121 |
111 120
|
eqtrd |
|
| 122 |
121
|
mpteq2dva |
|
| 123 |
122
|
adantr |
|
| 124 |
|
nfcv |
|
| 125 |
|
nfcv |
|
| 126 |
77 125 67
|
nfov |
|
| 127 |
79 69
|
oveq12d |
|
| 128 |
124 126 127
|
cbvmpt |
|
| 129 |
123 128
|
eqtrdi |
|
| 130 |
|
eqidd |
|
| 131 |
|
rlimcl |
|
| 132 |
4 131
|
syl |
|
| 133 |
132
|
adantlr |
|
| 134 |
108 133
|
syldan |
|
| 135 |
102 130 106 134
|
fsumsplit |
|
| 136 |
|
csbeq1a |
|
| 137 |
|
nfcv |
|
| 138 |
|
nfcsb1v |
|
| 139 |
136 137 138
|
cbvsum |
|
| 140 |
133
|
ralrimiva |
|
| 141 |
90
|
nfel1 |
|
| 142 |
93
|
eleq1d |
|
| 143 |
141 142
|
rspc |
|
| 144 |
52 140 143
|
sylc |
|
| 145 |
|
csbeq1 |
|
| 146 |
145
|
sumsn |
|
| 147 |
52 144 146
|
syl2anc |
|
| 148 |
139 147
|
eqtrid |
|
| 149 |
148
|
oveq2d |
|
| 150 |
135 149
|
eqtrd |
|
| 151 |
150
|
adantr |
|
| 152 |
99 129 151
|
3brtr4d |
|
| 153 |
152
|
ex |
|
| 154 |
153
|
expr |
|
| 155 |
154
|
a2d |
|
| 156 |
45 155
|
syl5 |
|
| 157 |
156
|
expcom |
|
| 158 |
157
|
a2d |
|
| 159 |
158
|
adantl |
|
| 160 |
16 23 30 37 41 159
|
findcard2s |
|
| 161 |
2 160
|
mpcom |
|
| 162 |
5 161
|
mpi |
|