Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019) (Proof shortened by JJ, 2-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppmapnn0fiub.u | |
|
fsuppmapnn0fiub.s | |
||
Assertion | fsuppmapnn0fiub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmapnn0fiub.u | |
|
2 | fsuppmapnn0fiub.s | |
|
3 | nfv | |
|
4 | nfra1 | |
|
5 | nfv | |
|
6 | 4 5 | nfan | |
7 | 3 6 | nfan | |
8 | suppssdm | |
|
9 | ssel2 | |
|
10 | elmapfn | |
|
11 | fndm | |
|
12 | eqimss | |
|
13 | 11 12 | syl | |
14 | 9 10 13 | 3syl | |
15 | 14 | 3ad2antl1 | |
16 | 8 15 | sstrid | |
17 | 16 | sseld | |
18 | 17 | adantlr | |
19 | 18 | imp | |
20 | 1 2 | fsuppmapnn0fiublem | |
21 | 20 | imp | |
22 | 21 | ad2antrr | |
23 | 9 10 11 | 3syl | |
24 | 23 | ex | |
25 | 24 | 3ad2ant1 | |
26 | 25 | adantr | |
27 | 26 | imp | |
28 | nn0ssre | |
|
29 | 27 28 | eqsstrdi | |
30 | 8 29 | sstrid | |
31 | 30 | ex | |
32 | 7 31 | ralrimi | |
33 | 32 | ad2antrr | |
34 | iunss | |
|
35 | 33 34 | sylibr | |
36 | 1 35 | eqsstrid | |
37 | simp2 | |
|
38 | id | |
|
39 | 38 | fsuppimpd | |
40 | 39 | ralimi | |
41 | 40 | adantr | |
42 | 37 41 | anim12i | |
43 | 42 | ad2antrr | |
44 | iunfi | |
|
45 | 43 44 | syl | |
46 | 1 45 | eqeltrid | |
47 | rspe | |
|
48 | eliun | |
|
49 | 47 48 | sylibr | |
50 | 49 1 | eleqtrrdi | |
51 | 50 | adantll | |
52 | 2 | a1i | |
53 | 36 46 51 52 | supfirege | |
54 | elfz2nn0 | |
|
55 | 19 22 53 54 | syl3anbrc | |
56 | 55 | ex | |
57 | 56 | ssrdv | |
58 | 57 | ex | |
59 | 7 58 | ralrimi | |
60 | 59 | ex | |