Metamath Proof Explorer


Theorem ftc1lem1

Description: Lemma for ftc1a and ftc1 . (Contributed by Mario Carneiro, 31-Aug-2014)

Ref Expression
Hypotheses ftc1.g G=xABAxFtdt
ftc1.a φA
ftc1.b φB
ftc1.le φAB
ftc1.s φABD
ftc1.d φD
ftc1.i φF𝐿1
ftc1a.f φF:D
ftc1lem1.x φXAB
ftc1lem1.y φYAB
Assertion ftc1lem1 φXYGYGX=XYFtdt

Proof

Step Hyp Ref Expression
1 ftc1.g G=xABAxFtdt
2 ftc1.a φA
3 ftc1.b φB
4 ftc1.le φAB
5 ftc1.s φABD
6 ftc1.d φD
7 ftc1.i φF𝐿1
8 ftc1a.f φF:D
9 ftc1lem1.x φXAB
10 ftc1lem1.y φYAB
11 oveq2 x=YAx=AY
12 itgeq1 Ax=AYAxFtdt=AYFtdt
13 11 12 syl x=YAxFtdt=AYFtdt
14 itgex AYFtdtV
15 13 1 14 fvmpt YABGY=AYFtdt
16 10 15 syl φGY=AYFtdt
17 16 adantr φXYGY=AYFtdt
18 2 adantr φXYA
19 iccssre ABAB
20 2 3 19 syl2anc φAB
21 20 10 sseldd φY
22 21 adantr φXYY
23 20 9 sseldd φX
24 23 adantr φXYX
25 elicc2 ABXABXAXXB
26 2 3 25 syl2anc φXABXAXXB
27 9 26 mpbid φXAXXB
28 27 simp2d φAX
29 28 adantr φXYAX
30 simpr φXYXY
31 elicc2 AYXAYXAXXY
32 2 21 31 syl2anc φXAYXAXXY
33 32 adantr φXYXAYXAXXY
34 24 29 30 33 mpbir3and φXYXAY
35 3 rexrd φB*
36 elicc2 ABYABYAYYB
37 2 3 36 syl2anc φYABYAYYB
38 10 37 mpbid φYAYYB
39 38 simp3d φYB
40 iooss2 B*YBAYAB
41 35 39 40 syl2anc φAYAB
42 41 5 sstrd φAYD
43 42 adantr φXYAYD
44 43 sselda φXYtAYtD
45 8 ffvelcdmda φtDFt
46 45 adantlr φXYtDFt
47 44 46 syldan φXYtAYFt
48 27 simp3d φXB
49 iooss2 B*XBAXAB
50 35 48 49 syl2anc φAXAB
51 50 5 sstrd φAXD
52 ioombl AXdomvol
53 52 a1i φAXdomvol
54 fvexd φtDFtV
55 8 feqmptd φF=tDFt
56 55 7 eqeltrrd φtDFt𝐿1
57 51 53 54 56 iblss φtAXFt𝐿1
58 57 adantr φXYtAXFt𝐿1
59 2 rexrd φA*
60 iooss1 A*AXXYAY
61 59 28 60 syl2anc φXYAY
62 61 41 sstrd φXYAB
63 62 5 sstrd φXYD
64 ioombl XYdomvol
65 64 a1i φXYdomvol
66 63 65 54 56 iblss φtXYFt𝐿1
67 66 adantr φXYtXYFt𝐿1
68 18 22 34 47 58 67 itgsplitioo φXYAYFtdt=AXFtdt+XYFtdt
69 17 68 eqtrd φXYGY=AXFtdt+XYFtdt
70 oveq2 x=XAx=AX
71 itgeq1 Ax=AXAxFtdt=AXFtdt
72 70 71 syl x=XAxFtdt=AXFtdt
73 itgex AXFtdtV
74 72 1 73 fvmpt XABGX=AXFtdt
75 9 74 syl φGX=AXFtdt
76 75 adantr φXYGX=AXFtdt
77 69 76 oveq12d φXYGYGX=AXFtdt+XYFtdt-AXFtdt
78 fvexd φtAXFtV
79 78 57 itgcl φAXFtdt
80 63 sselda φtXYtD
81 80 45 syldan φtXYFt
82 81 66 itgcl φXYFtdt
83 79 82 pncan2d φAXFtdt+XYFtdt-AXFtdt=XYFtdt
84 83 adantr φXYAXFtdt+XYFtdt-AXFtdt=XYFtdt
85 77 84 eqtrd φXYGYGX=XYFtdt