| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1.g |  | 
						
							| 2 |  | ftc1.a |  | 
						
							| 3 |  | ftc1.b |  | 
						
							| 4 |  | ftc1.le |  | 
						
							| 5 |  | ftc1.s |  | 
						
							| 6 |  | ftc1.d |  | 
						
							| 7 |  | ftc1.i |  | 
						
							| 8 |  | ftc1a.f |  | 
						
							| 9 |  | ftc1lem1.x |  | 
						
							| 10 |  | ftc1lem1.y |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 |  | itgeq1 |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 |  | itgex |  | 
						
							| 15 | 13 1 14 | fvmpt |  | 
						
							| 16 | 10 15 | syl |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 2 | adantr |  | 
						
							| 19 |  | iccssre |  | 
						
							| 20 | 2 3 19 | syl2anc |  | 
						
							| 21 | 20 10 | sseldd |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 20 9 | sseldd |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 |  | elicc2 |  | 
						
							| 26 | 2 3 25 | syl2anc |  | 
						
							| 27 | 9 26 | mpbid |  | 
						
							| 28 | 27 | simp2d |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 |  | elicc2 |  | 
						
							| 32 | 2 21 31 | syl2anc |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 24 29 30 33 | mpbir3and |  | 
						
							| 35 | 3 | rexrd |  | 
						
							| 36 |  | elicc2 |  | 
						
							| 37 | 2 3 36 | syl2anc |  | 
						
							| 38 | 10 37 | mpbid |  | 
						
							| 39 | 38 | simp3d |  | 
						
							| 40 |  | iooss2 |  | 
						
							| 41 | 35 39 40 | syl2anc |  | 
						
							| 42 | 41 5 | sstrd |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 43 | sselda |  | 
						
							| 45 | 8 | ffvelcdmda |  | 
						
							| 46 | 45 | adantlr |  | 
						
							| 47 | 44 46 | syldan |  | 
						
							| 48 | 27 | simp3d |  | 
						
							| 49 |  | iooss2 |  | 
						
							| 50 | 35 48 49 | syl2anc |  | 
						
							| 51 | 50 5 | sstrd |  | 
						
							| 52 |  | ioombl |  | 
						
							| 53 | 52 | a1i |  | 
						
							| 54 |  | fvexd |  | 
						
							| 55 | 8 | feqmptd |  | 
						
							| 56 | 55 7 | eqeltrrd |  | 
						
							| 57 | 51 53 54 56 | iblss |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 | 2 | rexrd |  | 
						
							| 60 |  | iooss1 |  | 
						
							| 61 | 59 28 60 | syl2anc |  | 
						
							| 62 | 61 41 | sstrd |  | 
						
							| 63 | 62 5 | sstrd |  | 
						
							| 64 |  | ioombl |  | 
						
							| 65 | 64 | a1i |  | 
						
							| 66 | 63 65 54 56 | iblss |  | 
						
							| 67 | 66 | adantr |  | 
						
							| 68 | 18 22 34 47 58 67 | itgsplitioo |  | 
						
							| 69 | 17 68 | eqtrd |  | 
						
							| 70 |  | oveq2 |  | 
						
							| 71 |  | itgeq1 |  | 
						
							| 72 | 70 71 | syl |  | 
						
							| 73 |  | itgex |  | 
						
							| 74 | 72 1 73 | fvmpt |  | 
						
							| 75 | 9 74 | syl |  | 
						
							| 76 | 75 | adantr |  | 
						
							| 77 | 69 76 | oveq12d |  | 
						
							| 78 |  | fvexd |  | 
						
							| 79 | 78 57 | itgcl |  | 
						
							| 80 | 63 | sselda |  | 
						
							| 81 | 80 45 | syldan |  | 
						
							| 82 | 81 66 | itgcl |  | 
						
							| 83 | 79 82 | pncan2d |  | 
						
							| 84 | 83 | adantr |  | 
						
							| 85 | 77 84 | eqtrd |  |