Metamath Proof Explorer


Theorem funcringcsetcALTV2lem9

Description: Lemma 9 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R=RingCatU
funcringcsetcALTV2.s S=SetCatU
funcringcsetcALTV2.b B=BaseR
funcringcsetcALTV2.c C=BaseS
funcringcsetcALTV2.u φUWUni
funcringcsetcALTV2.f φF=xBBasex
funcringcsetcALTV2.g φG=xB,yBIxRingHomy
Assertion funcringcsetcALTV2lem9 φXBYBZBHXHomRYKYHomRZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R=RingCatU
2 funcringcsetcALTV2.s S=SetCatU
3 funcringcsetcALTV2.b B=BaseR
4 funcringcsetcALTV2.c C=BaseS
5 funcringcsetcALTV2.u φUWUni
6 funcringcsetcALTV2.f φF=xBBasex
7 funcringcsetcALTV2.g φG=xB,yBIxRingHomy
8 5 adantr φXBYBZBUWUni
9 eqid HomR=HomR
10 simpr1 φXBYBZBXB
11 simpr2 φXBYBZBYB
12 1 3 8 9 10 11 ringchom φXBYBZBXHomRY=XRingHomY
13 12 eleq2d φXBYBZBHXHomRYHXRingHomY
14 simpr3 φXBYBZBZB
15 1 3 8 9 11 14 ringchom φXBYBZBYHomRZ=YRingHomZ
16 15 eleq2d φXBYBZBKYHomRZKYRingHomZ
17 13 16 anbi12d φXBYBZBHXHomRYKYHomRZHXRingHomYKYRingHomZ
18 rhmco KYRingHomZHXRingHomYKHXRingHomZ
19 18 ancoms HXRingHomYKYRingHomZKHXRingHomZ
20 19 adantl φXBYBZBHXRingHomYKYRingHomZKHXRingHomZ
21 fvresi KHXRingHomZIXRingHomZKH=KH
22 20 21 syl φXBYBZBHXRingHomYKYRingHomZIXRingHomZKH=KH
23 1 2 3 4 5 6 7 funcringcsetcALTV2lem5 φXBZBXGZ=IXRingHomZ
24 23 3adantr2 φXBYBZBXGZ=IXRingHomZ
25 24 adantr φXBYBZBHXRingHomYKYRingHomZXGZ=IXRingHomZ
26 8 adantr φXBYBZBHXRingHomYKYRingHomZUWUni
27 eqid compR=compR
28 1 3 5 ringcbas φB=URing
29 inss1 URingU
30 28 29 eqsstrdi φBU
31 30 sseld φXBXU
32 31 com12 XBφXU
33 32 3ad2ant1 XBYBZBφXU
34 33 impcom φXBYBZBXU
35 34 adantr φXBYBZBHXRingHomYKYRingHomZXU
36 30 sseld φYBYU
37 36 com12 YBφYU
38 37 3ad2ant2 XBYBZBφYU
39 38 impcom φXBYBZBYU
40 39 adantr φXBYBZBHXRingHomYKYRingHomZYU
41 30 sseld φZBZU
42 41 com12 ZBφZU
43 42 3ad2ant3 XBYBZBφZU
44 43 impcom φXBYBZBZU
45 44 adantr φXBYBZBHXRingHomYKYRingHomZZU
46 eqid BaseX=BaseX
47 eqid BaseY=BaseY
48 46 47 rhmf HXRingHomYH:BaseXBaseY
49 48 ad2antrl φXBYBZBHXRingHomYKYRingHomZH:BaseXBaseY
50 eqid BaseZ=BaseZ
51 47 50 rhmf KYRingHomZK:BaseYBaseZ
52 51 ad2antll φXBYBZBHXRingHomYKYRingHomZK:BaseYBaseZ
53 1 26 27 35 40 45 49 52 ringcco φXBYBZBHXRingHomYKYRingHomZKXYcompRZH=KH
54 25 53 fveq12d φXBYBZBHXRingHomYKYRingHomZXGZKXYcompRZH=IXRingHomZKH
55 eqid compS=compS
56 1 2 3 4 5 6 funcringcsetcALTV2lem2 φXBFXU
57 56 3ad2antr1 φXBYBZBFXU
58 57 adantr φXBYBZBHXRingHomYKYRingHomZFXU
59 1 2 3 4 5 6 funcringcsetcALTV2lem2 φYBFYU
60 59 3ad2antr2 φXBYBZBFYU
61 60 adantr φXBYBZBHXRingHomYKYRingHomZFYU
62 1 2 3 4 5 6 funcringcsetcALTV2lem2 φZBFZU
63 62 3ad2antr3 φXBYBZBFZU
64 63 adantr φXBYBZBHXRingHomYKYRingHomZFZU
65 1 2 3 4 5 6 funcringcsetcALTV2lem1 φXBFX=BaseX
66 65 3ad2antr1 φXBYBZBFX=BaseX
67 1 2 3 4 5 6 funcringcsetcALTV2lem1 φYBFY=BaseY
68 67 3ad2antr2 φXBYBZBFY=BaseY
69 66 68 feq23d φXBYBZBH:FXFYH:BaseXBaseY
70 69 adantr φXBYBZBHXRingHomYKYRingHomZH:FXFYH:BaseXBaseY
71 49 70 mpbird φXBYBZBHXRingHomYKYRingHomZH:FXFY
72 simpll φXBYBZBHXRingHomYKYRingHomZφ
73 3simpa XBYBZBXBYB
74 73 ad2antlr φXBYBZBHXRingHomYKYRingHomZXBYB
75 simprl φXBYBZBHXRingHomYKYRingHomZHXRingHomY
76 1 2 3 4 5 6 7 funcringcsetcALTV2lem6 φXBYBHXRingHomYXGYH=H
77 72 74 75 76 syl3anc φXBYBZBHXRingHomYKYRingHomZXGYH=H
78 77 feq1d φXBYBZBHXRingHomYKYRingHomZXGYH:FXFYH:FXFY
79 71 78 mpbird φXBYBZBHXRingHomYKYRingHomZXGYH:FXFY
80 1 2 3 4 5 6 funcringcsetcALTV2lem1 φZBFZ=BaseZ
81 80 3ad2antr3 φXBYBZBFZ=BaseZ
82 68 81 feq23d φXBYBZBK:FYFZK:BaseYBaseZ
83 82 adantr φXBYBZBHXRingHomYKYRingHomZK:FYFZK:BaseYBaseZ
84 52 83 mpbird φXBYBZBHXRingHomYKYRingHomZK:FYFZ
85 3simpc XBYBZBYBZB
86 85 ad2antlr φXBYBZBHXRingHomYKYRingHomZYBZB
87 simprr φXBYBZBHXRingHomYKYRingHomZKYRingHomZ
88 1 2 3 4 5 6 7 funcringcsetcALTV2lem6 φYBZBKYRingHomZYGZK=K
89 72 86 87 88 syl3anc φXBYBZBHXRingHomYKYRingHomZYGZK=K
90 89 feq1d φXBYBZBHXRingHomYKYRingHomZYGZK:FYFZK:FYFZ
91 84 90 mpbird φXBYBZBHXRingHomYKYRingHomZYGZK:FYFZ
92 2 26 55 58 61 64 79 91 setcco φXBYBZBHXRingHomYKYRingHomZYGZKFXFYcompSFZXGYH=YGZKXGYH
93 89 77 coeq12d φXBYBZBHXRingHomYKYRingHomZYGZKXGYH=KH
94 92 93 eqtrd φXBYBZBHXRingHomYKYRingHomZYGZKFXFYcompSFZXGYH=KH
95 22 54 94 3eqtr4d φXBYBZBHXRingHomYKYRingHomZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH
96 95 ex φXBYBZBHXRingHomYKYRingHomZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH
97 17 96 sylbid φXBYBZBHXHomRYKYHomRZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH
98 97 3impia φXBYBZBHXHomRYKYHomRZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH