Description: Lemma for gcdn0cl , gcddvds and dvdslegcd . (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gcdcllem2.1 | |
|
gcdcllem2.2 | |
||
Assertion | gcdcllem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcllem2.1 | |
|
2 | gcdcllem2.2 | |
|
3 | 2 | ssrab3 | |
4 | prssi | |
|
5 | neorian | |
|
6 | prid1g | |
|
7 | neeq1 | |
|
8 | 7 | rspcev | |
9 | 6 8 | sylan | |
10 | 9 | adantlr | |
11 | prid2g | |
|
12 | neeq1 | |
|
13 | 12 | rspcev | |
14 | 11 13 | sylan | |
15 | 14 | adantll | |
16 | 10 15 | jaodan | |
17 | 5 16 | sylan2br | |
18 | 1 | gcdcllem1 | |
19 | 4 17 18 | syl2an2r | |
20 | 1 2 | gcdcllem2 | |
21 | neeq1 | |
|
22 | raleq | |
|
23 | 22 | rexbidv | |
24 | 21 23 | anbi12d | |
25 | 20 24 | syl | |
26 | 25 | adantr | |
27 | 19 26 | mpbird | |
28 | suprzcl2 | |
|
29 | 3 28 | mp3an1 | |
30 | 27 29 | syl | |
31 | 3 30 | sselid | |
32 | 27 | simprd | |
33 | 1dvds | |
|
34 | 1dvds | |
|
35 | 33 34 | anim12i | |
36 | 1z | |
|
37 | breq1 | |
|
38 | breq1 | |
|
39 | 37 38 | anbi12d | |
40 | 39 2 | elrab2 | |
41 | 36 40 | mpbiran | |
42 | 35 41 | sylibr | |
43 | 42 | adantr | |
44 | suprzub | |
|
45 | 3 32 43 44 | mp3an2i | |
46 | elnnz1 | |
|
47 | 31 45 46 | sylanbrc | |
48 | breq1 | |
|
49 | breq1 | |
|
50 | 48 49 | anbi12d | |
51 | breq1 | |
|
52 | breq1 | |
|
53 | 51 52 | anbi12d | |
54 | 53 | cbvrabv | |
55 | 2 54 | eqtri | |
56 | 50 55 | elrab2 | |
57 | 30 56 | sylib | |
58 | 57 | simprd | |
59 | breq1 | |
|
60 | breq1 | |
|
61 | 59 60 | anbi12d | |
62 | 61 2 | elrab2 | |
63 | 62 | biimpri | |
64 | 63 | 3impb | |
65 | suprzub | |
|
66 | 65 | 3expia | |
67 | 3 66 | mpan | |
68 | 32 64 67 | syl2im | |
69 | 47 58 68 | 3jca | |