Metamath Proof Explorer


Theorem gcdcllem3

Description: Lemma for gcdn0cl , gcddvds and dvdslegcd . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses gcdcllem2.1 S=z|nMNzn
gcdcllem2.2 R=z|zMzN
Assertion gcdcllem3 MN¬M=0N=0supR<supR<MsupR<NKKMKNKsupR<

Proof

Step Hyp Ref Expression
1 gcdcllem2.1 S=z|nMNzn
2 gcdcllem2.2 R=z|zMzN
3 2 ssrab3 R
4 prssi MNMN
5 neorian M0N0¬M=0N=0
6 prid1g MMMN
7 neeq1 n=Mn0M0
8 7 rspcev MMNM0nMNn0
9 6 8 sylan MM0nMNn0
10 9 adantlr MNM0nMNn0
11 prid2g NNMN
12 neeq1 n=Nn0N0
13 12 rspcev NMNN0nMNn0
14 11 13 sylan NN0nMNn0
15 14 adantll MNN0nMNn0
16 10 15 jaodan MNM0N0nMNn0
17 5 16 sylan2br MN¬M=0N=0nMNn0
18 1 gcdcllem1 MNnMNn0SxySyx
19 4 17 18 syl2an2r MN¬M=0N=0SxySyx
20 1 2 gcdcllem2 MNR=S
21 neeq1 R=SRS
22 raleq R=SyRyxySyx
23 22 rexbidv R=SxyRyxxySyx
24 21 23 anbi12d R=SRxyRyxSxySyx
25 20 24 syl MNRxyRyxSxySyx
26 25 adantr MN¬M=0N=0RxyRyxSxySyx
27 19 26 mpbird MN¬M=0N=0RxyRyx
28 suprzcl2 RRxyRyxsupR<R
29 3 28 mp3an1 RxyRyxsupR<R
30 27 29 syl MN¬M=0N=0supR<R
31 3 30 sselid MN¬M=0N=0supR<
32 27 simprd MN¬M=0N=0xyRyx
33 1dvds M1M
34 1dvds N1N
35 33 34 anim12i MN1M1N
36 1z 1
37 breq1 z=1zM1M
38 breq1 z=1zN1N
39 37 38 anbi12d z=1zMzN1M1N
40 39 2 elrab2 1R11M1N
41 36 40 mpbiran 1R1M1N
42 35 41 sylibr MN1R
43 42 adantr MN¬M=0N=01R
44 suprzub RxyRyx1R1supR<
45 3 32 43 44 mp3an2i MN¬M=0N=01supR<
46 elnnz1 supR<supR<1supR<
47 31 45 46 sylanbrc MN¬M=0N=0supR<
48 breq1 x=supR<xMsupR<M
49 breq1 x=supR<xNsupR<N
50 48 49 anbi12d x=supR<xMxNsupR<MsupR<N
51 breq1 z=xzMxM
52 breq1 z=xzNxN
53 51 52 anbi12d z=xzMzNxMxN
54 53 cbvrabv z|zMzN=x|xMxN
55 2 54 eqtri R=x|xMxN
56 50 55 elrab2 supR<RsupR<supR<MsupR<N
57 30 56 sylib MN¬M=0N=0supR<supR<MsupR<N
58 57 simprd MN¬M=0N=0supR<MsupR<N
59 breq1 z=KzMKM
60 breq1 z=KzNKN
61 59 60 anbi12d z=KzMzNKMKN
62 61 2 elrab2 KRKKMKN
63 62 biimpri KKMKNKR
64 63 3impb KKMKNKR
65 suprzub RxyRyxKRKsupR<
66 65 3expia RxyRyxKRKsupR<
67 3 66 mpan xyRyxKRKsupR<
68 32 64 67 syl2im MN¬M=0N=0KKMKNKsupR<
69 47 58 68 3jca MN¬M=0N=0supR<supR<MsupR<NKKMKNKsupR<