Metamath Proof Explorer


Theorem glbconNOLD

Description: Obsolete version of glbconN as of 3-Jan-2025. (Contributed by NM, 17-Jan-2012) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses glbcon.b B=BaseK
glbcon.u U=lubK
glbcon.g G=glbK
glbcon.o ˙=ocK
Assertion glbconNOLD KHLSBGS=˙UxB|˙xS

Proof

Step Hyp Ref Expression
1 glbcon.b B=BaseK
2 glbcon.u U=lubK
3 glbcon.g G=glbK
4 glbcon.o ˙=ocK
5 sseqin2 SBBS=S
6 5 biimpi SBBS=S
7 dfin5 BS=xB|xS
8 6 7 eqtr3di SBS=xB|xS
9 8 fveq2d SBGS=GxB|xS
10 eqid K=K
11 biid zxB|xSyKzwBzxB|xSwKzwKyzxB|xSyKzwBzxB|xSwKzwKy
12 id KHLKHL
13 ssrab2 xB|xSB
14 13 a1i KHLxB|xSB
15 1 10 3 11 12 14 glbval KHLGxB|xS=ιyB|zxB|xSyKzwBzxB|xSwKzwKy
16 hlop KHLKOP
17 hlclat KHLKCLat
18 1 3 clatglbcl KCLatxB|xSBGxB|xSB
19 17 13 18 sylancl KHLGxB|xSB
20 15 19 eqeltrrd KHLιyB|zxB|xSyKzwBzxB|xSwKzwKyB
21 1 fvexi BV
22 21 riotaclbBAD ∃!yBzxB|xSyKzwBzxB|xSwKzwKyιyB|zxB|xSyKzwBzxB|xSwKzwKyB
23 20 22 sylibr KHL∃!yBzxB|xSyKzwBzxB|xSwKzwKy
24 breq1 y=˙vyKz˙vKz
25 24 ralbidv y=˙vzxB|xSyKzzxB|xS˙vKz
26 breq2 y=˙vwKywK˙v
27 26 imbi2d y=˙vzxB|xSwKzwKyzxB|xSwKzwK˙v
28 27 ralbidv y=˙vwBzxB|xSwKzwKywBzxB|xSwKzwK˙v
29 25 28 anbi12d y=˙vzxB|xSyKzwBzxB|xSwKzwKyzxB|xS˙vKzwBzxB|xSwKzwK˙v
30 1 4 29 riotaocN KOP∃!yBzxB|xSyKzwBzxB|xSwKzwKyιyB|zxB|xSyKzwBzxB|xSwKzwKy=˙ιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v
31 16 23 30 syl2anc KHLιyB|zxB|xSyKzwBzxB|xSwKzwKy=˙ιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v
32 16 ad2antrr KHLvBuBKOP
33 1 4 opoccl KOPuB˙uB
34 32 33 sylancom KHLvBuB˙uB
35 16 ad2antrr KHLvBzBKOP
36 1 4 opoccl KOPzB˙zB
37 35 36 sylancom KHLvBzB˙zB
38 1 4 opococ KOPzB˙˙z=z
39 35 38 sylancom KHLvBzB˙˙z=z
40 39 eqcomd KHLvBzBz=˙˙z
41 fveq2 u=˙z˙u=˙˙z
42 41 rspceeqv ˙zBz=˙˙zuBz=˙u
43 37 40 42 syl2anc KHLvBzBuBz=˙u
44 eleq1 z=˙uzS˙uS
45 breq2 z=˙u˙vKz˙vK˙u
46 44 45 imbi12d z=˙uzS˙vKz˙uS˙vK˙u
47 46 adantl KHLvBz=˙uzS˙vKz˙uS˙vK˙u
48 34 43 47 ralxfrd KHLvBzBzS˙vKzuB˙uS˙vK˙u
49 simpr KHLvBuBuB
50 simplr KHLvBuBvB
51 1 10 4 oplecon3b KOPuBvBuKv˙vK˙u
52 32 49 50 51 syl3anc KHLvBuBuKv˙vK˙u
53 52 imbi2d KHLvBuB˙uSuKv˙uS˙vK˙u
54 53 ralbidva KHLvBuB˙uSuKvuB˙uS˙vK˙u
55 48 54 bitr4d KHLvBzBzS˙vKzuB˙uSuKv
56 eleq1 x=zxSzS
57 56 ralrab zxB|xS˙vKzzBzS˙vKz
58 fveq2 x=u˙x=˙u
59 58 eleq1d x=u˙xS˙uS
60 59 ralrab uxB|˙xSuKvuB˙uSuKv
61 55 57 60 3bitr4g KHLvBzxB|xS˙vKzuxB|˙xSuKv
62 16 ad2antrr KHLvBtBKOP
63 1 4 opoccl KOPtB˙tB
64 62 63 sylancom KHLvBtB˙tB
65 16 ad2antrr KHLvBwBKOP
66 1 4 opoccl KOPwB˙wB
67 65 66 sylancom KHLvBwB˙wB
68 1 4 opococ KOPwB˙˙w=w
69 65 68 sylancom KHLvBwB˙˙w=w
70 69 eqcomd KHLvBwBw=˙˙w
71 fveq2 t=˙w˙t=˙˙w
72 71 rspceeqv ˙wBw=˙˙wtBw=˙t
73 67 70 72 syl2anc KHLvBwBtBw=˙t
74 breq1 w=˙twKz˙tKz
75 74 ralbidv w=˙tzxB|xSwKzzxB|xS˙tKz
76 breq1 w=˙twK˙v˙tK˙v
77 75 76 imbi12d w=˙tzxB|xSwKzwK˙vzxB|xS˙tKz˙tK˙v
78 77 adantl KHLvBw=˙tzxB|xSwKzwK˙vzxB|xS˙tKz˙tK˙v
79 64 73 78 ralxfrd KHLvBwBzxB|xSwKzwK˙vtBzxB|xS˙tKz˙tK˙v
80 16 ad3antrrr KHLvBtBuBKOP
81 simpr KHLvBtBuBuB
82 simplr KHLvBtBuBtB
83 1 10 4 oplecon3b KOPuBtBuKt˙tK˙u
84 80 81 82 83 syl3anc KHLvBtBuBuKt˙tK˙u
85 84 imbi2d KHLvBtBuB˙uSuKt˙uS˙tK˙u
86 85 ralbidva KHLvBtBuB˙uSuKtuB˙uS˙tK˙u
87 80 33 sylancom KHLvBtBuB˙uB
88 16 ad3antrrr KHLvBtBzBKOP
89 88 36 sylancom KHLvBtBzB˙zB
90 88 38 sylancom KHLvBtBzB˙˙z=z
91 90 eqcomd KHLvBtBzBz=˙˙z
92 89 91 42 syl2anc KHLvBtBzBuBz=˙u
93 breq2 z=˙u˙tKz˙tK˙u
94 44 93 imbi12d z=˙uzS˙tKz˙uS˙tK˙u
95 94 adantl KHLvBtBz=˙uzS˙tKz˙uS˙tK˙u
96 87 92 95 ralxfrd KHLvBtBzBzS˙tKzuB˙uS˙tK˙u
97 86 96 bitr4d KHLvBtBuB˙uSuKtzBzS˙tKz
98 59 ralrab uxB|˙xSuKtuB˙uSuKt
99 56 ralrab zxB|xS˙tKzzBzS˙tKz
100 97 98 99 3bitr4g KHLvBtBuxB|˙xSuKtzxB|xS˙tKz
101 simplr KHLvBtBvB
102 simpr KHLvBtBtB
103 1 10 4 oplecon3b KOPvBtBvKt˙tK˙v
104 62 101 102 103 syl3anc KHLvBtBvKt˙tK˙v
105 100 104 imbi12d KHLvBtBuxB|˙xSuKtvKtzxB|xS˙tKz˙tK˙v
106 105 ralbidva KHLvBtBuxB|˙xSuKtvKttBzxB|xS˙tKz˙tK˙v
107 79 106 bitr4d KHLvBwBzxB|xSwKzwK˙vtBuxB|˙xSuKtvKt
108 61 107 anbi12d KHLvBzxB|xS˙vKzwBzxB|xSwKzwK˙vuxB|˙xSuKvtBuxB|˙xSuKtvKt
109 108 riotabidva KHLιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v=ιvB|uxB|˙xSuKvtBuxB|˙xSuKtvKt
110 ssrab2 xB|˙xSB
111 biid uxB|˙xSuKvtBuxB|˙xSuKtvKtuxB|˙xSuKvtBuxB|˙xSuKtvKt
112 simpl KHLxB|˙xSBKHL
113 simpr KHLxB|˙xSBxB|˙xSB
114 1 10 2 111 112 113 lubval KHLxB|˙xSBUxB|˙xS=ιvB|uxB|˙xSuKvtBuxB|˙xSuKtvKt
115 110 114 mpan2 KHLUxB|˙xS=ιvB|uxB|˙xSuKvtBuxB|˙xSuKtvKt
116 109 115 eqtr4d KHLιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v=UxB|˙xS
117 116 fveq2d KHL˙ιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v=˙UxB|˙xS
118 15 31 117 3eqtrd KHLGxB|xS=˙UxB|˙xS
119 9 118 sylan9eqr KHLSBGS=˙UxB|˙xS