Metamath Proof Explorer


Theorem gsumconst

Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gsumconst.b B=BaseG
gsumconst.m ·˙=G
Assertion gsumconst GMndAFinXBGkAX=A·˙X

Proof

Step Hyp Ref Expression
1 gsumconst.b B=BaseG
2 gsumconst.m ·˙=G
3 simpl3 GMndAFinXBA=XB
4 eqid 0G=0G
5 1 4 2 mulg0 XB0·˙X=0G
6 3 5 syl GMndAFinXBA=0·˙X=0G
7 fveq2 A=A=
8 7 adantl GMndAFinXBA=A=
9 hash0 =0
10 8 9 eqtrdi GMndAFinXBA=A=0
11 10 oveq1d GMndAFinXBA=A·˙X=0·˙X
12 mpteq1 A=kAX=kX
13 12 adantl GMndAFinXBA=kAX=kX
14 mpt0 kX=
15 13 14 eqtrdi GMndAFinXBA=kAX=
16 15 oveq2d GMndAFinXBA=GkAX=G
17 4 gsum0 G=0G
18 16 17 eqtrdi GMndAFinXBA=GkAX=0G
19 6 11 18 3eqtr4rd GMndAFinXBA=GkAX=A·˙X
20 19 ex GMndAFinXBA=GkAX=A·˙X
21 simprl GMndAFinXBAf:1A1-1 ontoAA
22 nnuz =1
23 21 22 eleqtrdi GMndAFinXBAf:1A1-1 ontoAA1
24 simpr GMndAFinXBAf:1A1-1 ontoAx1Ax1A
25 simpl3 GMndAFinXBAf:1A1-1 ontoAXB
26 25 adantr GMndAFinXBAf:1A1-1 ontoAx1AXB
27 eqid x1AX=x1AX
28 27 fvmpt2 x1AXBx1AXx=X
29 24 26 28 syl2anc GMndAFinXBAf:1A1-1 ontoAx1Ax1AXx=X
30 f1of f:1A1-1 ontoAf:1AA
31 30 ad2antll GMndAFinXBAf:1A1-1 ontoAf:1AA
32 31 ffvelcdmda GMndAFinXBAf:1A1-1 ontoAx1AfxA
33 31 feqmptd GMndAFinXBAf:1A1-1 ontoAf=x1Afx
34 eqidd GMndAFinXBAf:1A1-1 ontoAkAX=kAX
35 eqidd k=fxX=X
36 32 33 34 35 fmptco GMndAFinXBAf:1A1-1 ontoAkAXf=x1AX
37 36 fveq1d GMndAFinXBAf:1A1-1 ontoAkAXfx=x1AXx
38 37 adantr GMndAFinXBAf:1A1-1 ontoAx1AkAXfx=x1AXx
39 elfznn x1Ax
40 fvconst2g XBx×Xx=X
41 25 39 40 syl2an GMndAFinXBAf:1A1-1 ontoAx1A×Xx=X
42 29 38 41 3eqtr4d GMndAFinXBAf:1A1-1 ontoAx1AkAXfx=×Xx
43 23 42 seqfveq GMndAFinXBAf:1A1-1 ontoAseq1+GkAXfA=seq1+G×XA
44 eqid +G=+G
45 eqid CntzG=CntzG
46 simpl1 GMndAFinXBAf:1A1-1 ontoAGMnd
47 simpl2 GMndAFinXBAf:1A1-1 ontoAAFin
48 25 adantr GMndAFinXBAf:1A1-1 ontoAkAXB
49 48 fmpttd GMndAFinXBAf:1A1-1 ontoAkAX:AB
50 eqidd GMndAFinXBAf:1A1-1 ontoAX+GX=X+GX
51 1 44 45 elcntzsn XBXCntzGXXBX+GX=X+GX
52 25 51 syl GMndAFinXBAf:1A1-1 ontoAXCntzGXXBX+GX=X+GX
53 25 50 52 mpbir2and GMndAFinXBAf:1A1-1 ontoAXCntzGX
54 53 snssd GMndAFinXBAf:1A1-1 ontoAXCntzGX
55 snidg XBXX
56 25 55 syl GMndAFinXBAf:1A1-1 ontoAXX
57 56 adantr GMndAFinXBAf:1A1-1 ontoAkAXX
58 57 fmpttd GMndAFinXBAf:1A1-1 ontoAkAX:AX
59 58 frnd GMndAFinXBAf:1A1-1 ontoArankAXX
60 45 cntzidss XCntzGXrankAXXrankAXCntzGrankAX
61 54 59 60 syl2anc GMndAFinXBAf:1A1-1 ontoArankAXCntzGrankAX
62 f1of1 f:1A1-1 ontoAf:1A1-1A
63 62 ad2antll GMndAFinXBAf:1A1-1 ontoAf:1A1-1A
64 suppssdm kAXsupp0GdomkAX
65 eqid kAX=kAX
66 65 dmmptss domkAXA
67 66 a1i GMndAFinXBAf:1A1-1 ontoAdomkAXA
68 64 67 sstrid GMndAFinXBAf:1A1-1 ontoAkAXsupp0GA
69 f1ofo f:1A1-1 ontoAf:1AontoA
70 forn f:1AontoAranf=A
71 69 70 syl f:1A1-1 ontoAranf=A
72 71 ad2antll GMndAFinXBAf:1A1-1 ontoAranf=A
73 68 72 sseqtrrd GMndAFinXBAf:1A1-1 ontoAkAXsupp0Granf
74 eqid kAXfsupp0G=kAXfsupp0G
75 1 4 44 45 46 47 49 61 21 63 73 74 gsumval3 GMndAFinXBAf:1A1-1 ontoAGkAX=seq1+GkAXfA
76 eqid seq1+G×X=seq1+G×X
77 1 44 2 76 mulgnn AXBA·˙X=seq1+G×XA
78 21 25 77 syl2anc GMndAFinXBAf:1A1-1 ontoAA·˙X=seq1+G×XA
79 43 75 78 3eqtr4d GMndAFinXBAf:1A1-1 ontoAGkAX=A·˙X
80 79 expr GMndAFinXBAf:1A1-1 ontoAGkAX=A·˙X
81 80 exlimdv GMndAFinXBAff:1A1-1 ontoAGkAX=A·˙X
82 81 expimpd GMndAFinXBAff:1A1-1 ontoAGkAX=A·˙X
83 fz1f1o AFinA=Aff:1A1-1 ontoA
84 83 3ad2ant2 GMndAFinXBA=Aff:1A1-1 ontoA
85 20 82 84 mpjaod GMndAFinXBGkAX=A·˙X