Metamath Proof Explorer


Theorem hdmap10lem

Description: Lemma for hdmap10 . (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap10.h H=LHypK
hdmap10.u U=DVecHKW
hdmap10.v V=BaseU
hdmap10.n N=LSpanU
hdmap10.c C=LCDualKW
hdmap10.l L=LSpanC
hdmap10.m M=mapdKW
hdmap10.s S=HDMapKW
hdmap10.k φKHLWH
hdmap10.e E=IBaseKILTrnKW
hdmap10.o 0˙=0U
hdmap10.d D=BaseC
hdmap10.j J=HVMapKW
hdmap10.i I=HDMap1KW
hdmap10lem.t φTV0˙
Assertion hdmap10lem φMNT=LST

Proof

Step Hyp Ref Expression
1 hdmap10.h H=LHypK
2 hdmap10.u U=DVecHKW
3 hdmap10.v V=BaseU
4 hdmap10.n N=LSpanU
5 hdmap10.c C=LCDualKW
6 hdmap10.l L=LSpanC
7 hdmap10.m M=mapdKW
8 hdmap10.s S=HDMapKW
9 hdmap10.k φKHLWH
10 hdmap10.e E=IBaseKILTrnKW
11 hdmap10.o 0˙=0U
12 hdmap10.d D=BaseC
13 hdmap10.j J=HVMapKW
14 hdmap10.i I=HDMap1KW
15 hdmap10lem.t φTV0˙
16 eqid BaseK=BaseK
17 eqid LTrnKW=LTrnKW
18 1 16 17 2 3 11 10 9 dvheveccl φEV0˙
19 18 eldifad φEV
20 15 eldifad φTV
21 1 2 3 4 9 19 20 dvh3dim φxV¬xNET
22 9 3ad2ant1 φxV¬xNETKHLWH
23 20 3ad2ant1 φxV¬xNETTV
24 simp2 φxV¬xNETxV
25 eqid LSubSpU=LSubSpU
26 1 2 9 dvhlmod φULMod
27 3 25 4 26 19 20 lspprcl φNETLSubSpU
28 3 4 26 19 20 lspprid1 φENET
29 25 4 26 27 28 lspsnel5a φNENET
30 3 4 26 19 20 lspprid2 φTNET
31 25 4 26 27 30 lspsnel5a φNTNET
32 29 31 unssd φNENTNET
33 32 sseld φxNENTxNET
34 33 con3dimp φ¬xNET¬xNENT
35 34 3adant2 φxV¬xNET¬xNENT
36 1 10 2 3 4 5 12 13 14 8 22 23 24 35 hdmapval2 φxV¬xNETST=IxIEJExT
37 36 eqcomd φxV¬xNETIxIEJExT=ST
38 eqid -U=-U
39 eqid -C=-C
40 26 3ad2ant1 φxV¬xNETULMod
41 27 3ad2ant1 φxV¬xNETNETLSubSpU
42 simp3 φxV¬xNET¬xNET
43 11 25 40 41 24 42 lssneln0 φxV¬xNETxV0˙
44 eqid 0C=0C
45 1 2 3 11 5 12 44 13 9 18 hvmapcl2 φJED0C
46 45 eldifad φJED
47 46 3ad2ant1 φxV¬xNETJED
48 1 2 3 11 4 5 6 7 13 9 18 mapdhvmap φMNE=LJE
49 48 3ad2ant1 φxV¬xNETMNE=LJE
50 1 2 9 dvhlvec φULVec
51 50 3ad2ant1 φxV¬xNETULVec
52 19 3ad2ant1 φxV¬xNETEV
53 3 4 51 24 52 23 42 lspindpi φxV¬xNETNxNENxNT
54 53 simpld φxV¬xNETNxNE
55 54 necomd φxV¬xNETNENx
56 18 3ad2ant1 φxV¬xNETEV0˙
57 1 2 3 11 4 5 12 6 7 14 22 47 49 55 56 24 hdmap1cl φxV¬xNETIEJExD
58 15 3ad2ant1 φxV¬xNETTV0˙
59 1 2 3 5 12 8 9 20 hdmapcl φSTD
60 59 3ad2ant1 φxV¬xNETSTD
61 53 simprd φxV¬xNETNxNT
62 eqid IEJEx=IEJEx
63 1 2 3 38 11 4 5 12 39 6 7 14 22 56 47 43 57 55 49 hdmap1eq φxV¬xNETIEJEx=IEJExMNx=LIEJExMNE-Ux=LJE-CIEJEx
64 62 63 mpbii φxV¬xNETMNx=LIEJExMNE-Ux=LJE-CIEJEx
65 64 simpld φxV¬xNETMNx=LIEJEx
66 1 2 3 38 11 4 5 12 39 6 7 14 22 43 57 58 60 61 65 hdmap1eq φxV¬xNETIxIEJExT=STMNT=LSTMNx-UT=LIEJEx-CST
67 37 66 mpbid φxV¬xNETMNT=LSTMNx-UT=LIEJEx-CST
68 67 simpld φxV¬xNETMNT=LST
69 68 rexlimdv3a φxV¬xNETMNT=LST
70 21 69 mpd φMNT=LST