Description: Lemma for hdmapg . Line 15 in Baer p. 111, f(x,y) alpha = f(y,x). In the proof, our E , ( O{ E } ) , X , Y , k , u , l , and v correspond respectively to Baer's w, H, x, y, x', x'', y', and y'', and our ( ( SY )X ) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmapglem7.h | |
|
hdmapglem7.e | |
||
hdmapglem7.o | |
||
hdmapglem7.u | |
||
hdmapglem7.v | |
||
hdmapglem7.p | |
||
hdmapglem7.q | |
||
hdmapglem7.r | |
||
hdmapglem7.b | |
||
hdmapglem7.a | |
||
hdmapglem7.n | |
||
hdmapglem7.k | |
||
hdmapglem7.x | |
||
hdmapglem7.t | |
||
hdmapglem7.z | |
||
hdmapglem7.c | |
||
hdmapglem7.s | |
||
hdmapglem7.g | |
||
hdmapglem7.y | |
||
Assertion | hdmapglem7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem7.h | |
|
2 | hdmapglem7.e | |
|
3 | hdmapglem7.o | |
|
4 | hdmapglem7.u | |
|
5 | hdmapglem7.v | |
|
6 | hdmapglem7.p | |
|
7 | hdmapglem7.q | |
|
8 | hdmapglem7.r | |
|
9 | hdmapglem7.b | |
|
10 | hdmapglem7.a | |
|
11 | hdmapglem7.n | |
|
12 | hdmapglem7.k | |
|
13 | hdmapglem7.x | |
|
14 | hdmapglem7.t | |
|
15 | hdmapglem7.z | |
|
16 | hdmapglem7.c | |
|
17 | hdmapglem7.s | |
|
18 | hdmapglem7.g | |
|
19 | hdmapglem7.y | |
|
20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | hdmapglem7a | |
21 | 1 2 3 4 5 6 7 8 9 10 11 12 19 | hdmapglem7a | |
22 | 12 | ad2antrr | |
23 | 1 4 12 | dvhlmod | |
24 | 8 | lmodring | |
25 | 23 24 | syl | |
26 | 25 | ad2antrr | |
27 | simplrr | |
|
28 | simprr | |
|
29 | 1 4 8 9 18 22 28 | hgmapcl | |
30 | 9 14 | ringcl | |
31 | 26 27 29 30 | syl3anc | |
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | 1 32 33 4 5 34 2 12 | dvheveccl | |
36 | 35 | eldifad | |
37 | 36 | snssd | |
38 | 1 4 5 3 | dochssv | |
39 | 12 37 38 | syl2anc | |
40 | 39 | ad2antrr | |
41 | simplrl | |
|
42 | 40 41 | sseldd | |
43 | simprl | |
|
44 | 40 43 | sseldd | |
45 | 1 4 5 8 9 17 22 42 44 | hdmapipcl | |
46 | 1 4 8 9 16 18 22 31 45 | hgmapadd | |
47 | 1 4 8 9 14 18 22 27 29 | hgmapmul | |
48 | 1 4 8 9 18 22 28 | hgmapvv | |
49 | 48 | oveq1d | |
50 | 47 49 | eqtrd | |
51 | eqid | |
|
52 | 1 2 3 4 5 6 51 7 8 9 14 15 17 18 22 41 43 27 27 | hdmapglem5 | |
53 | 50 52 | oveq12d | |
54 | 46 53 | eqtrd | |
55 | 13 | ad2antrr | |
56 | 1 2 3 4 5 6 7 8 9 10 11 22 55 14 15 16 17 18 43 41 28 27 | hdmapglem7b | |
57 | 56 | fveq2d | |
58 | 1 2 3 4 5 6 7 8 9 10 11 22 55 14 15 16 17 18 41 43 27 28 | hdmapglem7b | |
59 | 54 57 58 | 3eqtr4d | |
60 | 59 | 3adantl3 | |
61 | 60 | 3adant3 | |
62 | simp3 | |
|
63 | 62 | fveq2d | |
64 | simp13 | |
|
65 | 63 64 | fveq12d | |
66 | 65 | fveq2d | |
67 | 64 | fveq2d | |
68 | 67 62 | fveq12d | |
69 | 61 66 68 | 3eqtr4d | |
70 | 69 | 3exp | |
71 | 70 | rexlimdvv | |
72 | 71 | 3exp | |
73 | 72 | rexlimdvv | |
74 | 20 21 73 | mp2d | |