Metamath Proof Explorer


Theorem heiborlem1

Description: Lemma for heibor . We work with a fixed open cover U throughout. The set K is the set of all subsets of X that admit no finite subcover of U . (We wish to prove that K is empty.) If a set C has no finite subcover, then any finite cover of C must contain a set that also has no finite subcover. (Contributed by Jeff Madsen, 23-Jan-2014)

Ref Expression
Hypotheses heibor.1 J=MetOpenD
heibor.3 K=u|¬v𝒫UFinuv
heiborlem1.4 BV
Assertion heiborlem1 AFinCxABCKxABK

Proof

Step Hyp Ref Expression
1 heibor.1 J=MetOpenD
2 heibor.3 K=u|¬v𝒫UFinuv
3 heiborlem1.4 BV
4 sseq1 u=BuvBv
5 4 rexbidv u=Bv𝒫UFinuvv𝒫UFinBv
6 5 notbid u=B¬v𝒫UFinuv¬v𝒫UFinBv
7 3 6 2 elab2 BK¬v𝒫UFinBv
8 7 con2bii v𝒫UFinBv¬BK
9 8 ralbii xAv𝒫UFinBvxA¬BK
10 ralnex xA¬BK¬xABK
11 9 10 bitr2i ¬xABKxAv𝒫UFinBv
12 unieq v=txv=tx
13 12 sseq2d v=txBvBtx
14 13 ac6sfi AFinxAv𝒫UFinBvtt:A𝒫UFinxABtx
15 14 ex AFinxAv𝒫UFinBvtt:A𝒫UFinxABtx
16 15 adantr AFinCxABxAv𝒫UFinBvtt:A𝒫UFinxABtx
17 sseq1 u=CuvCv
18 17 rexbidv u=Cv𝒫UFinuvv𝒫UFinCv
19 18 notbid u=C¬v𝒫UFinuv¬v𝒫UFinCv
20 19 2 elab2g CKCK¬v𝒫UFinCv
21 20 ibi CK¬v𝒫UFinCv
22 frn t:A𝒫UFinrant𝒫UFin
23 22 ad2antrl AFint:A𝒫UFinxABtxrant𝒫UFin
24 inss1 𝒫UFin𝒫U
25 23 24 sstrdi AFint:A𝒫UFinxABtxrant𝒫U
26 sspwuni rant𝒫UrantU
27 25 26 sylib AFint:A𝒫UFinxABtxrantU
28 vex tV
29 28 rnex rantV
30 29 uniex rantV
31 30 elpw rant𝒫UrantU
32 27 31 sylibr AFint:A𝒫UFinxABtxrant𝒫U
33 ffn t:A𝒫UFintFnA
34 33 ad2antrl AFint:A𝒫UFinxABtxtFnA
35 dffn4 tFnAt:Aontorant
36 34 35 sylib AFint:A𝒫UFinxABtxt:Aontorant
37 fofi AFint:AontorantrantFin
38 36 37 syldan AFint:A𝒫UFinxABtxrantFin
39 inss2 𝒫UFinFin
40 23 39 sstrdi AFint:A𝒫UFinxABtxrantFin
41 unifi rantFinrantFinrantFin
42 38 40 41 syl2anc AFint:A𝒫UFinxABtxrantFin
43 32 42 elind AFint:A𝒫UFinxABtxrant𝒫UFin
44 43 adantlr AFinCxABt:A𝒫UFinxABtxrant𝒫UFin
45 simplr AFinCxABt:A𝒫UFinxABtxCxAB
46 fnfvelrn tFnAxAtxrant
47 33 46 sylan t:A𝒫UFinxAtxrant
48 47 adantll AFint:A𝒫UFinxAtxrant
49 elssuni txranttxrant
50 uniss txranttxrant
51 48 49 50 3syl AFint:A𝒫UFinxAtxrant
52 sstr2 BtxtxrantBrant
53 51 52 syl5com AFint:A𝒫UFinxABtxBrant
54 53 ralimdva AFint:A𝒫UFinxABtxxABrant
55 54 impr AFint:A𝒫UFinxABtxxABrant
56 iunss xABrantxABrant
57 55 56 sylibr AFint:A𝒫UFinxABtxxABrant
58 57 adantlr AFinCxABt:A𝒫UFinxABtxxABrant
59 45 58 sstrd AFinCxABt:A𝒫UFinxABtxCrant
60 unieq v=rantv=rant
61 60 sseq2d v=rantCvCrant
62 61 rspcev rant𝒫UFinCrantv𝒫UFinCv
63 44 59 62 syl2anc AFinCxABt:A𝒫UFinxABtxv𝒫UFinCv
64 21 63 nsyl3 AFinCxABt:A𝒫UFinxABtx¬CK
65 64 ex AFinCxABt:A𝒫UFinxABtx¬CK
66 65 exlimdv AFinCxABtt:A𝒫UFinxABtx¬CK
67 16 66 syld AFinCxABxAv𝒫UFinBv¬CK
68 11 67 biimtrid AFinCxAB¬xABK¬CK
69 68 con4d AFinCxABCKxABK
70 69 3impia AFinCxABCKxABK