Description: Lemma for heibor . We work with a fixed open cover U throughout. The set K is the set of all subsets of X that admit no finite subcover of U . (We wish to prove that K is empty.) If a set C has no finite subcover, then any finite cover of C must contain a set that also has no finite subcover. (Contributed by Jeff Madsen, 23-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | heibor.1 | |
|
heibor.3 | |
||
heiborlem1.4 | |
||
Assertion | heiborlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | heibor.1 | |
|
2 | heibor.3 | |
|
3 | heiborlem1.4 | |
|
4 | sseq1 | |
|
5 | 4 | rexbidv | |
6 | 5 | notbid | |
7 | 3 6 2 | elab2 | |
8 | 7 | con2bii | |
9 | 8 | ralbii | |
10 | ralnex | |
|
11 | 9 10 | bitr2i | |
12 | unieq | |
|
13 | 12 | sseq2d | |
14 | 13 | ac6sfi | |
15 | 14 | ex | |
16 | 15 | adantr | |
17 | sseq1 | |
|
18 | 17 | rexbidv | |
19 | 18 | notbid | |
20 | 19 2 | elab2g | |
21 | 20 | ibi | |
22 | frn | |
|
23 | 22 | ad2antrl | |
24 | inss1 | |
|
25 | 23 24 | sstrdi | |
26 | sspwuni | |
|
27 | 25 26 | sylib | |
28 | vex | |
|
29 | 28 | rnex | |
30 | 29 | uniex | |
31 | 30 | elpw | |
32 | 27 31 | sylibr | |
33 | ffn | |
|
34 | 33 | ad2antrl | |
35 | dffn4 | |
|
36 | 34 35 | sylib | |
37 | fofi | |
|
38 | 36 37 | syldan | |
39 | inss2 | |
|
40 | 23 39 | sstrdi | |
41 | unifi | |
|
42 | 38 40 41 | syl2anc | |
43 | 32 42 | elind | |
44 | 43 | adantlr | |
45 | simplr | |
|
46 | fnfvelrn | |
|
47 | 33 46 | sylan | |
48 | 47 | adantll | |
49 | elssuni | |
|
50 | uniss | |
|
51 | 48 49 50 | 3syl | |
52 | sstr2 | |
|
53 | 51 52 | syl5com | |
54 | 53 | ralimdva | |
55 | 54 | impr | |
56 | iunss | |
|
57 | 55 56 | sylibr | |
58 | 57 | adantlr | |
59 | 45 58 | sstrd | |
60 | unieq | |
|
61 | 60 | sseq2d | |
62 | 61 | rspcev | |
63 | 44 59 62 | syl2anc | |
64 | 21 63 | nsyl3 | |
65 | 64 | ex | |
66 | 65 | exlimdv | |
67 | 16 66 | syld | |
68 | 11 67 | biimtrid | |
69 | 68 | con4d | |
70 | 69 | 3impia | |