Metamath Proof Explorer


Theorem hlpasch

Description: An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020)

Ref Expression
Hypotheses hlpasch.p P = Base G
hlpasch.i I = Itv G
hlpasch.k K = hl 𝒢 G
hlpasch.g φ G 𝒢 Tarski
hlpasch.1 φ A P
hlpasch.2 φ B P
hlpasch.3 φ C P
hlpasch.4 φ X P
hlpasch.5 φ D P
hlpasch.6 φ A B
hlpasch.7 φ C K B D
hlpasch.8 φ A X I C
Assertion hlpasch φ e P A K B e e X I D

Proof

Step Hyp Ref Expression
1 hlpasch.p P = Base G
2 hlpasch.i I = Itv G
3 hlpasch.k K = hl 𝒢 G
4 hlpasch.g φ G 𝒢 Tarski
5 hlpasch.1 φ A P
6 hlpasch.2 φ B P
7 hlpasch.3 φ C P
8 hlpasch.4 φ X P
9 hlpasch.5 φ D P
10 hlpasch.6 φ A B
11 hlpasch.7 φ C K B D
12 hlpasch.8 φ A X I C
13 eqid Line 𝒢 G = Line 𝒢 G
14 4 adantr φ C B I D G 𝒢 Tarski
15 9 adantr φ C B I D D P
16 8 adantr φ C B I D X P
17 7 adantr φ C B I D C P
18 6 adantr φ C B I D B P
19 5 adantr φ C B I D A P
20 eqid dist G = dist G
21 simpr φ C B I D C B I D
22 1 20 2 14 18 17 15 21 tgbtwncom φ C B I D C D I B
23 12 adantr φ C B I D A X I C
24 1 2 13 14 15 16 17 18 19 22 23 outpasch φ C B I D e P e D I X A B I e
25 simplr φ C B I D e P e D I X A B I e e P
26 18 ad2antrr φ C B I D e P e D I X A B I e B P
27 19 ad2antrr φ C B I D e P e D I X A B I e A P
28 14 ad2antrr φ C B I D e P e D I X A B I e G 𝒢 Tarski
29 simprr φ C B I D e P e D I X A B I e A B I e
30 1 20 2 28 26 27 25 29 tgbtwncom φ C B I D e P e D I X A B I e A e I B
31 28 adantr φ C B I D e P e D I X A B I e e = B G 𝒢 Tarski
32 26 adantr φ C B I D e P e D I X A B I e e = B B P
33 27 adantr φ C B I D e P e D I X A B I e e = B A P
34 simplrr φ C B I D e P e D I X A B I e e = B A B I e
35 simpr φ C B I D e P e D I X A B I e e = B e = B
36 35 oveq2d φ C B I D e P e D I X A B I e e = B B I e = B I B
37 34 36 eleqtrd φ C B I D e P e D I X A B I e e = B A B I B
38 1 20 2 31 32 33 37 axtgbtwnid φ C B I D e P e D I X A B I e e = B B = A
39 38 eqcomd φ C B I D e P e D I X A B I e e = B A = B
40 10 ad3antrrr φ C B I D e P e D I X A B I e A B
41 40 adantr φ C B I D e P e D I X A B I e e = B A B
42 41 neneqd φ C B I D e P e D I X A B I e e = B ¬ A = B
43 39 42 pm2.65da φ C B I D e P e D I X A B I e ¬ e = B
44 43 neqned φ C B I D e P e D I X A B I e e B
45 1 2 3 25 26 27 28 27 30 44 40 btwnhl2 φ C B I D e P e D I X A B I e A K B e
46 15 ad2antrr φ C B I D e P e D I X A B I e D P
47 16 ad2antrr φ C B I D e P e D I X A B I e X P
48 simprl φ C B I D e P e D I X A B I e e D I X
49 1 20 2 28 46 25 47 48 tgbtwncom φ C B I D e P e D I X A B I e e X I D
50 45 49 jca φ C B I D e P e D I X A B I e A K B e e X I D
51 50 ex φ C B I D e P e D I X A B I e A K B e e X I D
52 51 reximdva φ C B I D e P e D I X A B I e e P A K B e e X I D
53 24 52 mpd φ C B I D e P A K B e e X I D
54 9 ad2antrr φ D B I C X B Line 𝒢 G D D P
55 54 adantr φ D B I C X B Line 𝒢 G D X = B D P
56 simpr φ D B I C X B Line 𝒢 G D X = B e = D e = D
57 56 breq2d φ D B I C X B Line 𝒢 G D X = B e = D A K B e A K B D
58 56 eleq1d φ D B I C X B Line 𝒢 G D X = B e = D e X I D D X I D
59 57 58 anbi12d φ D B I C X B Line 𝒢 G D X = B e = D A K B e e X I D A K B D D X I D
60 5 ad2antrr φ D B I C X B Line 𝒢 G D A P
61 60 adantr φ D B I C X B Line 𝒢 G D X = B A P
62 6 ad2antrr φ D B I C X B Line 𝒢 G D B P
63 62 adantr φ D B I C X B Line 𝒢 G D X = B B P
64 4 ad2antrr φ D B I C X B Line 𝒢 G D G 𝒢 Tarski
65 64 adantr φ D B I C X B Line 𝒢 G D X = B G 𝒢 Tarski
66 1 2 3 7 9 6 4 11 hlcomd φ D K B C
67 66 ad3antrrr φ D B I C X B Line 𝒢 G D X = B D K B C
68 7 adantr φ D B I C C P
69 68 ad2antrr φ D B I C X B Line 𝒢 G D X = B C P
70 12 adantr φ D B I C A X I C
71 70 ad2antrr φ D B I C X B Line 𝒢 G D X = B A X I C
72 simpr φ D B I C X B Line 𝒢 G D X = B X = B
73 72 oveq1d φ D B I C X B Line 𝒢 G D X = B X I C = B I C
74 71 73 eleqtrd φ D B I C X B Line 𝒢 G D X = B A B I C
75 1 2 3 7 9 6 4 ishlg φ C K B D C B D B C B I D D B I C
76 11 75 mpbid φ C B D B C B I D D B I C
77 76 simp1d φ C B
78 77 ad3antrrr φ D B I C X B Line 𝒢 G D X = B C B
79 10 ad2antrr φ D B I C X B Line 𝒢 G D A B
80 79 adantr φ D B I C X B Line 𝒢 G D X = B A B
81 1 2 3 55 69 63 65 61 74 78 80 hlbtwn φ D B I C X B Line 𝒢 G D X = B D K B C D K B A
82 67 81 mpbid φ D B I C X B Line 𝒢 G D X = B D K B A
83 1 2 3 55 61 63 65 82 hlcomd φ D B I C X B Line 𝒢 G D X = B A K B D
84 8 ad2antrr φ D B I C X B Line 𝒢 G D X P
85 84 adantr φ D B I C X B Line 𝒢 G D X = B X P
86 1 20 2 65 85 55 tgbtwntriv2 φ D B I C X B Line 𝒢 G D X = B D X I D
87 83 86 jca φ D B I C X B Line 𝒢 G D X = B A K B D D X I D
88 55 59 87 rspcedvd φ D B I C X B Line 𝒢 G D X = B e P A K B e e X I D
89 84 ad2antrr φ D B I C X B Line 𝒢 G D X B A K B X X P
90 simpr φ D B I C X B Line 𝒢 G D e = X e = X
91 90 breq2d φ D B I C X B Line 𝒢 G D e = X A K B e A K B X
92 90 eleq1d φ D B I C X B Line 𝒢 G D e = X e X I D X X I D
93 91 92 anbi12d φ D B I C X B Line 𝒢 G D e = X A K B e e X I D A K B X X X I D
94 93 ad4ant14 φ D B I C X B Line 𝒢 G D X B A K B X e = X A K B e e X I D A K B X X X I D
95 simpr φ D B I C X B Line 𝒢 G D X B A K B X A K B X
96 1 20 2 64 84 54 tgbtwntriv1 φ D B I C X B Line 𝒢 G D X X I D
97 96 ad2antrr φ D B I C X B Line 𝒢 G D X B A K B X X X I D
98 95 97 jca φ D B I C X B Line 𝒢 G D X B A K B X A K B X X X I D
99 89 94 98 rspcedvd φ D B I C X B Line 𝒢 G D X B A K B X e P A K B e e X I D
100 54 ad2antrr φ D B I C X B Line 𝒢 G D X B B X I A D P
101 simpr φ D B I C X B Line 𝒢 G D X B B X I A e = D e = D
102 101 breq2d φ D B I C X B Line 𝒢 G D X B B X I A e = D A K B e A K B D
103 101 eleq1d φ D B I C X B Line 𝒢 G D X B B X I A e = D e X I D D X I D
104 102 103 anbi12d φ D B I C X B Line 𝒢 G D X B B X I A e = D A K B e e X I D A K B D D X I D
105 79 ad2antrr φ D B I C X B Line 𝒢 G D X B B X I A A B
106 1 2 3 7 9 6 4 11 hlne2 φ D B
107 106 ad4antr φ D B I C X B Line 𝒢 G D X B B X I A D B
108 64 ad2antrr φ D B I C X B Line 𝒢 G D X B B X I A G 𝒢 Tarski
109 62 ad2antrr φ D B I C X B Line 𝒢 G D X B B X I A B P
110 60 ad2antrr φ D B I C X B Line 𝒢 G D X B B X I A A P
111 68 ad2antrr φ D B I C X B Line 𝒢 G D X B C P
112 111 adantr φ D B I C X B Line 𝒢 G D X B B X I A C P
113 84 ad2antrr φ D B I C X B Line 𝒢 G D X B B X I A X P
114 simpr φ D B I C X B Line 𝒢 G D X B B X I A B X I A
115 70 ad2antrr φ D B I C X B Line 𝒢 G D X B A X I C
116 115 adantr φ D B I C X B Line 𝒢 G D X B B X I A A X I C
117 1 20 2 108 113 109 110 112 114 116 tgbtwnexch3 φ D B I C X B Line 𝒢 G D X B B X I A A B I C
118 simp-4r φ D B I C X B Line 𝒢 G D X B B X I A D B I C
119 1 2 108 109 110 100 112 117 118 tgbtwnconn3 φ D B I C X B Line 𝒢 G D X B B X I A A B I D D B I A
120 1 2 3 5 9 6 4 ishlg φ A K B D A B D B A B I D D B I A
121 120 ad4antr φ D B I C X B Line 𝒢 G D X B B X I A A K B D A B D B A B I D D B I A
122 105 107 119 121 mpbir3and φ D B I C X B Line 𝒢 G D X B B X I A A K B D
123 1 20 2 108 113 100 tgbtwntriv2 φ D B I C X B Line 𝒢 G D X B B X I A D X I D
124 122 123 jca φ D B I C X B Line 𝒢 G D X B B X I A A K B D D X I D
125 100 104 124 rspcedvd φ D B I C X B Line 𝒢 G D X B B X I A e P A K B e e X I D
126 8 ad3antrrr φ D B I C X B Line 𝒢 G D X B X P
127 6 ad3antrrr φ D B I C X B Line 𝒢 G D X B B P
128 5 ad3antrrr φ D B I C X B Line 𝒢 G D X B A P
129 4 ad3antrrr φ D B I C X B Line 𝒢 G D X B G 𝒢 Tarski
130 simpr φ D B I C X B Line 𝒢 G D X B X B
131 130 neneqd φ D B I C X B Line 𝒢 G D X B ¬ X = B
132 64 adantr φ D B I C X B Line 𝒢 G D X B G 𝒢 Tarski
133 132 adantr φ D B I C X B Line 𝒢 G D X B X = C G 𝒢 Tarski
134 126 adantr φ D B I C X B Line 𝒢 G D X B X = C X P
135 128 adantr φ D B I C X B Line 𝒢 G D X B X = C A P
136 115 adantr φ D B I C X B Line 𝒢 G D X B X = C A X I C
137 simpr φ D B I C X B Line 𝒢 G D X B X = C X = C
138 137 oveq2d φ D B I C X B Line 𝒢 G D X B X = C X I X = X I C
139 136 138 eleqtrrd φ D B I C X B Line 𝒢 G D X B X = C A X I X
140 1 20 2 133 134 135 139 axtgbtwnid φ D B I C X B Line 𝒢 G D X B X = C X = A
141 140 olcd φ D B I C X B Line 𝒢 G D X B X = C B X Line 𝒢 G A X = A
142 132 adantr φ D B I C X B Line 𝒢 G D X B X C G 𝒢 Tarski
143 127 adantr φ D B I C X B Line 𝒢 G D X B X C B P
144 111 adantr φ D B I C X B Line 𝒢 G D X B X C C P
145 126 adantr φ D B I C X B Line 𝒢 G D X B X C X P
146 128 adantr φ D B I C X B Line 𝒢 G D X B X C A P
147 simpr φ D B I C X B Line 𝒢 G D X B X C X C
148 147 necomd φ D B I C X B Line 𝒢 G D X B X C C X
149 148 neneqd φ D B I C X B Line 𝒢 G D X B X C ¬ C = X
150 54 adantr φ D B I C X B Line 𝒢 G D X B D P
151 106 ad3antrrr φ D B I C X B Line 𝒢 G D X B D B
152 simplr φ D B I C X B Line 𝒢 G D X B X B Line 𝒢 G D
153 1 2 13 132 150 127 126 151 152 lncom φ D B I C X B Line 𝒢 G D X B X D Line 𝒢 G B
154 77 necomd φ B C
155 154 ad3antrrr φ D B I C X B Line 𝒢 G D X B B C
156 66 ad3antrrr φ D B I C X B Line 𝒢 G D X B D K B C
157 1 2 3 150 111 127 132 13 156 hlln φ D B I C X B Line 𝒢 G D X B D C Line 𝒢 G B
158 1 2 13 132 127 111 150 155 157 lncom φ D B I C X B Line 𝒢 G D X B D B Line 𝒢 G C
159 158 orcd φ D B I C X B Line 𝒢 G D X B D B Line 𝒢 G C B = C
160 1 2 13 132 126 150 127 111 153 159 coltr φ D B I C X B Line 𝒢 G D X B X B Line 𝒢 G C B = C
161 1 13 2 132 127 111 126 160 colrot1 φ D B I C X B Line 𝒢 G D X B B C Line 𝒢 G X C = X
162 161 orcomd φ D B I C X B Line 𝒢 G D X B C = X B C Line 𝒢 G X
163 162 adantr φ D B I C X B Line 𝒢 G D X B X C C = X B C Line 𝒢 G X
164 163 ord φ D B I C X B Line 𝒢 G D X B X C ¬ C = X B C Line 𝒢 G X
165 149 164 mpd φ D B I C X B Line 𝒢 G D X B X C B C Line 𝒢 G X
166 1 13 2 132 126 128 111 115 btwncolg3 φ D B I C X B Line 𝒢 G D X B C X Line 𝒢 G A X = A
167 166 adantr φ D B I C X B Line 𝒢 G D X B X C C X Line 𝒢 G A X = A
168 1 2 13 142 143 144 145 146 165 167 coltr φ D B I C X B Line 𝒢 G D X B X C B X Line 𝒢 G A X = A
169 141 168 pm2.61dane φ D B I C X B Line 𝒢 G D X B B X Line 𝒢 G A X = A
170 1 13 2 132 126 128 127 169 colrot2 φ D B I C X B Line 𝒢 G D X B A B Line 𝒢 G X B = X
171 1 13 2 132 127 126 128 170 colcom φ D B I C X B Line 𝒢 G D X B A X Line 𝒢 G B X = B
172 171 orcomd φ D B I C X B Line 𝒢 G D X B X = B A X Line 𝒢 G B
173 172 ord φ D B I C X B Line 𝒢 G D X B ¬ X = B A X Line 𝒢 G B
174 131 173 mpd φ D B I C X B Line 𝒢 G D X B A X Line 𝒢 G B
175 1 2 3 126 127 128 129 128 13 174 lnhl φ D B I C X B Line 𝒢 G D X B A K B X B X I A
176 99 125 175 mpjaodan φ D B I C X B Line 𝒢 G D X B e P A K B e e X I D
177 88 176 pm2.61dane φ D B I C X B Line 𝒢 G D e P A K B e e X I D
178 4 adantr φ D B I C G 𝒢 Tarski
179 8 adantr φ D B I C X P
180 6 adantr φ D B I C B P
181 5 adantr φ D B I C A P
182 9 adantr φ D B I C D P
183 simpr φ D B I C D B I C
184 1 20 2 178 179 180 68 181 182 70 183 axtgpasch φ D B I C e P e A I B e D I X
185 184 adantr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X
186 simplr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e P
187 181 ad3antrrr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X A P
188 180 ad3antrrr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X B P
189 178 ad3antrrr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X G 𝒢 Tarski
190 simprl φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e A I B
191 1 20 2 189 187 186 188 190 tgbtwncom φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e B I A
192 10 necomd φ B A
193 192 ad4antr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X B A
194 189 adantr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B G 𝒢 Tarski
195 9 ad5antr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B D P
196 8 ad5antr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B X P
197 188 adantr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B B P
198 simp-4r φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B ¬ X B Line 𝒢 G D
199 106 necomd φ B D
200 199 ad5antr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B B D
201 200 neneqd φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B ¬ B = D
202 ioran ¬ X B Line 𝒢 G D B = D ¬ X B Line 𝒢 G D ¬ B = D
203 198 201 202 sylanbrc φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B ¬ X B Line 𝒢 G D B = D
204 1 13 2 194 197 195 196 203 ncolrot2 φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B ¬ D X Line 𝒢 G B X = B
205 simpr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B e = B
206 186 adantr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B e P
207 1 2 13 194 195 196 197 204 ncolne1 φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B D X
208 simplrr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B e D I X
209 1 2 13 194 195 196 206 207 208 btwnlng1 φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B e D Line 𝒢 G X
210 205 209 eqeltrrd φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B B D Line 𝒢 G X
211 1 2 13 194 195 196 207 tglinerflx1 φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B D D Line 𝒢 G X
212 106 ad5antr φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B D B
213 212 necomd φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B B D
214 1 2 13 194 197 195 213 tglinerflx1 φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B B B Line 𝒢 G D
215 1 2 13 194 197 195 213 tglinerflx2 φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B D B Line 𝒢 G D
216 1 2 13 194 195 196 197 195 204 210 211 214 215 tglineinteq φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e = B B = D
217 216 201 pm2.65da φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X ¬ e = B
218 217 neqned φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e B
219 1 2 3 188 187 186 189 187 191 193 218 btwnhl1 φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e K B A
220 1 2 3 186 187 188 189 219 hlcomd φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X A K B e
221 178 ad3antrrr φ D B I C ¬ X B Line 𝒢 G D e P e D I X G 𝒢 Tarski
222 182 ad3antrrr φ D B I C ¬ X B Line 𝒢 G D e P e D I X D P
223 simplr φ D B I C ¬ X B Line 𝒢 G D e P e D I X e P
224 179 ad3antrrr φ D B I C ¬ X B Line 𝒢 G D e P e D I X X P
225 simpr φ D B I C ¬ X B Line 𝒢 G D e P e D I X e D I X
226 1 20 2 221 222 223 224 225 tgbtwncom φ D B I C ¬ X B Line 𝒢 G D e P e D I X e X I D
227 226 adantrl φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e X I D
228 220 227 jca φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X A K B e e X I D
229 228 ex φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X A K B e e X I D
230 229 reximdva φ D B I C ¬ X B Line 𝒢 G D e P e A I B e D I X e P A K B e e X I D
231 185 230 mpd φ D B I C ¬ X B Line 𝒢 G D e P A K B e e X I D
232 177 231 pm2.61dan φ D B I C e P A K B e e X I D
233 76 simp3d φ C B I D D B I C
234 53 232 233 mpjaodan φ e P A K B e e X I D