Metamath Proof Explorer


Theorem hmopidmpji

Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of Halmos p. 44. (Halmos seems to omit the proof that H is a closed subspace, which is not trivial as hmopidmchi shows.) (Contributed by NM, 22-Apr-2006) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hmopidmch.1 THrmOp
hmopidmch.2 TT=T
Assertion hmopidmpji T=projranT

Proof

Step Hyp Ref Expression
1 hmopidmch.1 THrmOp
2 hmopidmch.2 TT=T
3 hmoplin THrmOpTLinOp
4 1 3 ax-mp TLinOp
5 4 lnopfi T:
6 ffn T:TFn
7 5 6 ax-mp TFn
8 1 2 hmopidmchi ranTC
9 8 pjfni projranTFn
10 eqfnfv TFnprojranTFnT=projranTxTx=projranTx
11 7 9 10 mp2an T=projranTxTx=projranTx
12 fnfvelrn TFnxTxranT
13 7 12 mpan xTxranT
14 id xx
15 5 ffvelcdmi xTx
16 hvsubcl xTxx-Tx
17 14 15 16 syl2anc xx-Tx
18 simpl xyx
19 15 adantr xyTx
20 5 ffvelcdmi yTy
21 20 adantl xyTy
22 his2sub xTxTyx-TxihTy=xihTyTxihTy
23 18 19 21 22 syl3anc xyx-TxihTy=xihTyTxihTy
24 hmop THrmOpxTyxihTTy=TxihTy
25 1 24 mp3an1 xTyxihTTy=TxihTy
26 20 25 sylan2 xyxihTTy=TxihTy
27 5 5 hocoi yTTy=TTy
28 2 fveq1i TTy=Ty
29 27 28 eqtr3di yTTy=Ty
30 29 adantl xyTTy=Ty
31 30 oveq2d xyxihTTy=xihTy
32 26 31 eqtr3d xyTxihTy=xihTy
33 32 oveq2d xyxihTyTxihTy=xihTyxihTy
34 hicl xTyxihTy
35 20 34 sylan2 xyxihTy
36 35 subidd xyxihTyxihTy=0
37 23 33 36 3eqtrd xyx-TxihTy=0
38 37 ralrimiva xyx-TxihTy=0
39 oveq2 z=Tyx-Txihz=x-TxihTy
40 39 eqeq1d z=Tyx-Txihz=0x-TxihTy=0
41 40 ralrn TFnzranTx-Txihz=0yx-TxihTy=0
42 7 41 ax-mp zranTx-Txihz=0yx-TxihTy=0
43 38 42 sylibr xzranTx-Txihz=0
44 8 chssii ranT
45 ocel ranTx-TxranTx-TxzranTx-Txihz=0
46 44 45 ax-mp x-TxranTx-TxzranTx-Txihz=0
47 17 43 46 sylanbrc xx-TxranT
48 8 pjcompi TxranTx-TxranTprojranTTx+x-Tx=Tx
49 13 47 48 syl2anc xprojranTTx+x-Tx=Tx
50 hvpncan3 TxxTx+x-Tx=x
51 15 14 50 syl2anc xTx+x-Tx=x
52 51 fveq2d xprojranTTx+x-Tx=projranTx
53 49 52 eqtr3d xTx=projranTx
54 11 53 mprgbir T=projranT