Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of Halmos p. 44. (Halmos seems to omit the proof that H is a closed subspace, which is not trivial as hmopidmchi shows.) (Contributed by NM, 22-Apr-2006) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hmopidmch.1 | |
|
hmopidmch.2 | |
||
Assertion | hmopidmpji | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopidmch.1 | |
|
2 | hmopidmch.2 | |
|
3 | hmoplin | |
|
4 | 1 3 | ax-mp | |
5 | 4 | lnopfi | |
6 | ffn | |
|
7 | 5 6 | ax-mp | |
8 | 1 2 | hmopidmchi | |
9 | 8 | pjfni | |
10 | eqfnfv | |
|
11 | 7 9 10 | mp2an | |
12 | fnfvelrn | |
|
13 | 7 12 | mpan | |
14 | id | |
|
15 | 5 | ffvelcdmi | |
16 | hvsubcl | |
|
17 | 14 15 16 | syl2anc | |
18 | simpl | |
|
19 | 15 | adantr | |
20 | 5 | ffvelcdmi | |
21 | 20 | adantl | |
22 | his2sub | |
|
23 | 18 19 21 22 | syl3anc | |
24 | hmop | |
|
25 | 1 24 | mp3an1 | |
26 | 20 25 | sylan2 | |
27 | 5 5 | hocoi | |
28 | 2 | fveq1i | |
29 | 27 28 | eqtr3di | |
30 | 29 | adantl | |
31 | 30 | oveq2d | |
32 | 26 31 | eqtr3d | |
33 | 32 | oveq2d | |
34 | hicl | |
|
35 | 20 34 | sylan2 | |
36 | 35 | subidd | |
37 | 23 33 36 | 3eqtrd | |
38 | 37 | ralrimiva | |
39 | oveq2 | |
|
40 | 39 | eqeq1d | |
41 | 40 | ralrn | |
42 | 7 41 | ax-mp | |
43 | 38 42 | sylibr | |
44 | 8 | chssii | |
45 | ocel | |
|
46 | 44 45 | ax-mp | |
47 | 17 43 46 | sylanbrc | |
48 | 8 | pjcompi | |
49 | 13 47 48 | syl2anc | |
50 | hvpncan3 | |
|
51 | 15 14 50 | syl2anc | |
52 | 51 | fveq2d | |
53 | 49 52 | eqtr3d | |
54 | 11 53 | mprgbir | |