Metamath Proof Explorer


Theorem icccmp

Description: A closed interval in RR is compact. (Contributed by Mario Carneiro, 13-Jun-2014)

Ref Expression
Hypotheses icccmp.1 J=topGenran.
icccmp.2 T=J𝑡AB
Assertion icccmp ABTComp

Proof

Step Hyp Ref Expression
1 icccmp.1 J=topGenran.
2 icccmp.2 T=J𝑡AB
3 eqid abs2=abs2
4 eqid xAB|z𝒫uFinAxz=xAB|z𝒫uFinAxz
5 simplll ABABu𝒫JABuA
6 simpllr ABABu𝒫JABuB
7 simplr ABABu𝒫JABuAB
8 elpwi u𝒫JuJ
9 8 ad2antrl ABABu𝒫JABuuJ
10 simprr ABABu𝒫JABuABu
11 1 2 3 4 5 6 7 9 10 icccmplem3 ABABu𝒫JABuBxAB|z𝒫uFinAxz
12 oveq2 x=BAx=AB
13 12 sseq1d x=BAxzABz
14 13 rexbidv x=Bz𝒫uFinAxzz𝒫uFinABz
15 14 elrab BxAB|z𝒫uFinAxzBABz𝒫uFinABz
16 15 simprbi BxAB|z𝒫uFinAxzz𝒫uFinABz
17 11 16 syl ABABu𝒫JABuz𝒫uFinABz
18 17 expr ABABu𝒫JABuz𝒫uFinABz
19 18 ralrimiva ABABu𝒫JABuz𝒫uFinABz
20 retop topGenran.Top
21 1 20 eqeltri JTop
22 iccssre ABAB
23 22 adantr ABABAB
24 uniretop =topGenran.
25 1 unieqi J=topGenran.
26 24 25 eqtr4i =J
27 26 cmpsub JTopABJ𝑡ABCompu𝒫JABuz𝒫uFinABz
28 21 23 27 sylancr ABABJ𝑡ABCompu𝒫JABuz𝒫uFinABz
29 19 28 mpbird ABABJ𝑡ABComp
30 rexr AA*
31 rexr BB*
32 icc0 A*B*AB=B<A
33 30 31 32 syl2an ABAB=B<A
34 33 biimpar ABB<AAB=
35 34 oveq2d ABB<AJ𝑡AB=J𝑡
36 rest0 JTopJ𝑡=
37 21 36 ax-mp J𝑡=
38 35 37 eqtrdi ABB<AJ𝑡AB=
39 0cmp Comp
40 38 39 eqeltrdi ABB<AJ𝑡ABComp
41 lelttric ABABB<A
42 29 40 41 mpjaodan ABJ𝑡ABComp
43 2 42 eqeltrid ABTComp