Description: A closed interval in RR is compact. (Contributed by Mario Carneiro, 13-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | icccmp.1 | |
|
icccmp.2 | |
||
Assertion | icccmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icccmp.1 | |
|
2 | icccmp.2 | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | simplll | |
|
6 | simpllr | |
|
7 | simplr | |
|
8 | elpwi | |
|
9 | 8 | ad2antrl | |
10 | simprr | |
|
11 | 1 2 3 4 5 6 7 9 10 | icccmplem3 | |
12 | oveq2 | |
|
13 | 12 | sseq1d | |
14 | 13 | rexbidv | |
15 | 14 | elrab | |
16 | 15 | simprbi | |
17 | 11 16 | syl | |
18 | 17 | expr | |
19 | 18 | ralrimiva | |
20 | retop | |
|
21 | 1 20 | eqeltri | |
22 | iccssre | |
|
23 | 22 | adantr | |
24 | uniretop | |
|
25 | 1 | unieqi | |
26 | 24 25 | eqtr4i | |
27 | 26 | cmpsub | |
28 | 21 23 27 | sylancr | |
29 | 19 28 | mpbird | |
30 | rexr | |
|
31 | rexr | |
|
32 | icc0 | |
|
33 | 30 31 32 | syl2an | |
34 | 33 | biimpar | |
35 | 34 | oveq2d | |
36 | rest0 | |
|
37 | 21 36 | ax-mp | |
38 | 35 37 | eqtrdi | |
39 | 0cmp | |
|
40 | 38 39 | eqeltrdi | |
41 | lelttric | |
|
42 | 29 40 41 | mpjaodan | |
43 | 2 42 | eqeltrid | |