Metamath Proof Explorer


Theorem icccvx

Description: A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion icccvx ABCABDABT011TC+TDAB

Proof

Step Hyp Ref Expression
1 iccss2 CABDABCDAB
2 1 adantl ABCABDABCDAB
3 2 3adantr3 ABCABDABT01CDAB
4 3 adantr ABCABDABT01C<DCDAB
5 iccssre ABAB
6 5 sselda ABCABC
7 6 adantrr ABCABDABC
8 5 sselda ABDABD
9 8 adantrl ABCABDABD
10 7 9 jca ABCABDABCD
11 10 3adantr3 ABCABDABT01CD
12 simpr3 ABCABDABT01T01
13 11 12 jca ABCABDABT01CDT01
14 lincmb01cmp CDC<DT011TC+TDCD
15 14 ex CDC<DT011TC+TDCD
16 15 3expa CDC<DT011TC+TDCD
17 16 imp CDC<DT011TC+TDCD
18 17 an32s CDT01C<D1TC+TDCD
19 13 18 sylan ABCABDABT01C<D1TC+TDCD
20 4 19 sseldd ABCABDABT01C<D1TC+TDAB
21 oveq2 C=D1TC=1TD
22 21 oveq1d C=D1TC+TD=1TD+TD
23 unitssre 01
24 23 sseli T01T
25 24 recnd T01T
26 25 ad2antll ABDABT01T
27 8 recnd ABDABD
28 27 adantrr ABDABT01D
29 ax-1cn 1
30 npcan 1T1-T+T=1
31 29 30 mpan T1-T+T=1
32 31 adantr TD1-T+T=1
33 32 oveq1d TD1-T+TD=1D
34 subcl 1T1T
35 29 34 mpan T1T
36 35 ancri T1TT
37 adddir 1TTD1-T+TD=1TD+TD
38 37 3expa 1TTD1-T+TD=1TD+TD
39 36 38 sylan TD1-T+TD=1TD+TD
40 mullid D1D=D
41 40 adantl TD1D=D
42 33 39 41 3eqtr3d TD1TD+TD=D
43 26 28 42 syl2anc ABDABT011TD+TD=D
44 43 3adantr1 ABCABDABT011TD+TD=D
45 22 44 sylan9eqr ABCABDABT01C=D1TC+TD=D
46 simplr2 ABCABDABT01C=DDAB
47 45 46 eqeltrd ABCABDABT01C=D1TC+TDAB
48 iccss2 DABCABDCAB
49 48 adantl ABDABCABDCAB
50 49 ancom2s ABCABDABDCAB
51 50 3adantr3 ABCABDABT01DCAB
52 51 adantr ABCABDABT01D<CDCAB
53 9 7 jca ABCABDABDC
54 53 3adantr3 ABCABDABT01DC
55 54 12 jca ABCABDABT01DCT01
56 iirev T011T01
57 23 56 sselid T011T
58 57 recnd T011T
59 recn CC
60 mulcl 1TC1TC
61 58 59 60 syl2anr CT011TC
62 61 adantll DCT011TC
63 recn DD
64 mulcl TDTD
65 25 63 64 syl2anr DT01TD
66 65 adantlr DCT01TD
67 62 66 addcomd DCT011TC+TD=TD+1TC
68 67 3adantl3 DCD<CT011TC+TD=TD+1TC
69 nncan 1T11T=T
70 29 69 mpan T11T=T
71 70 eqcomd TT=11T
72 71 oveq1d TTD=11TD
73 72 oveq1d TTD+1TC=11TD+1TC
74 25 73 syl T01TD+1TC=11TD+1TC
75 74 adantl DCD<CT01TD+1TC=11TD+1TC
76 68 75 eqtrd DCD<CT011TC+TD=11TD+1TC
77 lincmb01cmp DCD<C1T0111TD+1TCDC
78 56 77 sylan2 DCD<CT0111TD+1TCDC
79 76 78 eqeltrd DCD<CT011TC+TDDC
80 79 ex DCD<CT011TC+TDDC
81 80 3expa DCD<CT011TC+TDDC
82 81 imp DCD<CT011TC+TDDC
83 82 an32s DCT01D<C1TC+TDDC
84 55 83 sylan ABCABDABT01D<C1TC+TDDC
85 52 84 sseldd ABCABDABT01D<C1TC+TDAB
86 7 9 lttri4d ABCABDABC<DC=DD<C
87 86 3adantr3 ABCABDABT01C<DC=DD<C
88 20 47 85 87 mpjao3dan ABCABDABT011TC+TDAB
89 88 ex ABCABDABT011TC+TDAB