Description: Image of the difference with a Cartesian product. (Contributed by Thierry Arnoux, 13-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | imadifxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ima0 | |
|
2 | imaeq2 | |
|
3 | imaeq2 | |
|
4 | ima0 | |
|
5 | 3 4 | eqtrdi | |
6 | 5 | difeq1d | |
7 | 0dif | |
|
8 | 6 7 | eqtrdi | |
9 | 1 2 8 | 3eqtr4a | |
10 | 9 | adantl | |
11 | uncom | |
|
12 | un0 | |
|
13 | 11 12 | eqtr2i | |
14 | inundif | |
|
15 | 14 | imaeq1i | |
16 | imaundir | |
|
17 | 15 16 | eqtr3i | |
18 | 17 | difeq1i | |
19 | difundir | |
|
20 | 18 19 | eqtri | |
21 | inss2 | |
|
22 | imass1 | |
|
23 | ssdif | |
|
24 | 21 22 23 | mp2b | |
25 | xpima | |
|
26 | incom | |
|
27 | df-ss | |
|
28 | 27 | biimpi | |
29 | 26 28 | eqtr3id | |
30 | 29 | adantl | |
31 | simpl | |
|
32 | 30 31 | eqnetrd | |
33 | neneq | |
|
34 | iffalse | |
|
35 | 32 33 34 | 3syl | |
36 | 25 35 | eqtrid | |
37 | 36 | difeq1d | |
38 | difid | |
|
39 | 37 38 | eqtrdi | |
40 | 24 39 | sseqtrid | |
41 | ss0 | |
|
42 | 40 41 | syl | |
43 | df-ima | |
|
44 | df-res | |
|
45 | 44 | rneqi | |
46 | 43 45 | eqtri | |
47 | 46 | ineq1i | |
48 | xpss1 | |
|
49 | sslin | |
|
50 | rnss | |
|
51 | 48 49 50 | 3syl | |
52 | ssn0 | |
|
53 | 52 | ancoms | |
54 | inss1 | |
|
55 | ssdif | |
|
56 | 54 55 | ax-mp | |
57 | incom | |
|
58 | indif2 | |
|
59 | 57 58 | eqtr3i | |
60 | difxp2 | |
|
61 | 56 59 60 | 3sstr4i | |
62 | rnss | |
|
63 | 61 62 | mp1i | |
64 | rnxp | |
|
65 | 63 64 | sseqtrd | |
66 | disj2 | |
|
67 | 65 66 | sylibr | |
68 | 53 67 | syl | |
69 | ssdisj | |
|
70 | 51 68 69 | syl2an2 | |
71 | 47 70 | eqtrid | |
72 | disj3 | |
|
73 | 71 72 | sylib | |
74 | 73 | eqcomd | |
75 | 42 74 | uneq12d | |
76 | 20 75 | eqtrid | |
77 | 13 76 | eqtr4id | |
78 | 77 | ancoms | |
79 | 10 78 | pm2.61dane | |