Metamath Proof Explorer


Theorem imadifxp

Description: Image of the difference with a Cartesian product. (Contributed by Thierry Arnoux, 13-Dec-2017)

Ref Expression
Assertion imadifxp C A R A × B C = R C B

Proof

Step Hyp Ref Expression
1 ima0 R A × B =
2 imaeq2 C = R A × B C = R A × B
3 imaeq2 C = R C = R
4 ima0 R =
5 3 4 eqtrdi C = R C =
6 5 difeq1d C = R C B = B
7 0dif B =
8 6 7 eqtrdi C = R C B =
9 1 2 8 3eqtr4a C = R A × B C = R C B
10 9 adantl C A C = R A × B C = R C B
11 uncom R A × B C = R A × B C
12 un0 R A × B C = R A × B C
13 11 12 eqtr2i R A × B C = R A × B C
14 inundif R A × B R A × B = R
15 14 imaeq1i R A × B R A × B C = R C
16 imaundir R A × B R A × B C = R A × B C R A × B C
17 15 16 eqtr3i R C = R A × B C R A × B C
18 17 difeq1i R C B = R A × B C R A × B C B
19 difundir R A × B C R A × B C B = R A × B C B R A × B C B
20 18 19 eqtri R C B = R A × B C B R A × B C B
21 inss2 R A × B A × B
22 imass1 R A × B A × B R A × B C A × B C
23 ssdif R A × B C A × B C R A × B C B A × B C B
24 21 22 23 mp2b R A × B C B A × B C B
25 xpima A × B C = if A C = B
26 incom C A = A C
27 df-ss C A C A = C
28 27 biimpi C A C A = C
29 26 28 syl5eqr C A A C = C
30 29 adantl C C A A C = C
31 simpl C C A C
32 30 31 eqnetrd C C A A C
33 neneq A C ¬ A C =
34 iffalse ¬ A C = if A C = B = B
35 32 33 34 3syl C C A if A C = B = B
36 25 35 syl5eq C C A A × B C = B
37 36 difeq1d C C A A × B C B = B B
38 difid B B =
39 37 38 eqtrdi C C A A × B C B =
40 24 39 sseqtrid C C A R A × B C B
41 ss0 R A × B C B R A × B C B =
42 40 41 syl C C A R A × B C B =
43 df-ima R A × B C = ran R A × B C
44 df-res R A × B C = R A × B C × V
45 44 rneqi ran R A × B C = ran R A × B C × V
46 43 45 eqtri R A × B C = ran R A × B C × V
47 46 ineq1i R A × B C B = ran R A × B C × V B
48 xpss1 C A C × V A × V
49 sslin C × V A × V R A × B C × V R A × B A × V
50 rnss R A × B C × V R A × B A × V ran R A × B C × V ran R A × B A × V
51 48 49 50 3syl C A ran R A × B C × V ran R A × B A × V
52 ssn0 C A C A
53 52 ancoms C C A A
54 inss1 A × V R A × V
55 ssdif A × V R A × V A × V R A × B A × V A × B
56 54 55 ax-mp A × V R A × B A × V A × B
57 incom A × V R A × B = R A × B A × V
58 indif2 A × V R A × B = A × V R A × B
59 57 58 eqtr3i R A × B A × V = A × V R A × B
60 difxp2 A × V B = A × V A × B
61 56 59 60 3sstr4i R A × B A × V A × V B
62 rnss R A × B A × V A × V B ran R A × B A × V ran A × V B
63 61 62 mp1i A ran R A × B A × V ran A × V B
64 rnxp A ran A × V B = V B
65 63 64 sseqtrd A ran R A × B A × V V B
66 disj2 ran R A × B A × V B = ran R A × B A × V V B
67 65 66 sylibr A ran R A × B A × V B =
68 53 67 syl C C A ran R A × B A × V B =
69 ssdisj ran R A × B C × V ran R A × B A × V ran R A × B A × V B = ran R A × B C × V B =
70 51 68 69 syl2an2 C C A ran R A × B C × V B =
71 47 70 syl5eq C C A R A × B C B =
72 disj3 R A × B C B = R A × B C = R A × B C B
73 71 72 sylib C C A R A × B C = R A × B C B
74 73 eqcomd C C A R A × B C B = R A × B C
75 42 74 uneq12d C C A R A × B C B R A × B C B = R A × B C
76 20 75 syl5eq C C A R C B = R A × B C
77 13 76 eqtr4id C C A R A × B C = R C B
78 77 ancoms C A C R A × B C = R C B
79 10 78 pm2.61dane C A R A × B C = R C B