Metamath Proof Explorer


Theorem imadifxp

Description: Image of the difference with a Cartesian product. (Contributed by Thierry Arnoux, 13-Dec-2017)

Ref Expression
Assertion imadifxp CARA×BC=RCB

Proof

Step Hyp Ref Expression
1 ima0 RA×B=
2 imaeq2 C=RA×BC=RA×B
3 imaeq2 C=RC=R
4 ima0 R=
5 3 4 eqtrdi C=RC=
6 5 difeq1d C=RCB=B
7 0dif B=
8 6 7 eqtrdi C=RCB=
9 1 2 8 3eqtr4a C=RA×BC=RCB
10 9 adantl CAC=RA×BC=RCB
11 uncom RA×BC=RA×BC
12 un0 RA×BC=RA×BC
13 11 12 eqtr2i RA×BC=RA×BC
14 inundif RA×BRA×B=R
15 14 imaeq1i RA×BRA×BC=RC
16 imaundir RA×BRA×BC=RA×BCRA×BC
17 15 16 eqtr3i RC=RA×BCRA×BC
18 17 difeq1i RCB=RA×BCRA×BCB
19 difundir RA×BCRA×BCB=RA×BCBRA×BCB
20 18 19 eqtri RCB=RA×BCBRA×BCB
21 inss2 RA×BA×B
22 imass1 RA×BA×BRA×BCA×BC
23 ssdif RA×BCA×BCRA×BCBA×BCB
24 21 22 23 mp2b RA×BCBA×BCB
25 xpima A×BC=ifAC=B
26 incom CA=AC
27 df-ss CACA=C
28 27 biimpi CACA=C
29 26 28 eqtr3id CAAC=C
30 29 adantl CCAAC=C
31 simpl CCAC
32 30 31 eqnetrd CCAAC
33 neneq AC¬AC=
34 iffalse ¬AC=ifAC=B=B
35 32 33 34 3syl CCAifAC=B=B
36 25 35 eqtrid CCAA×BC=B
37 36 difeq1d CCAA×BCB=BB
38 difid BB=
39 37 38 eqtrdi CCAA×BCB=
40 24 39 sseqtrid CCARA×BCB
41 ss0 RA×BCBRA×BCB=
42 40 41 syl CCARA×BCB=
43 df-ima RA×BC=ranRA×BC
44 df-res RA×BC=RA×BC×V
45 44 rneqi ranRA×BC=ranRA×BC×V
46 43 45 eqtri RA×BC=ranRA×BC×V
47 46 ineq1i RA×BCB=ranRA×BC×VB
48 xpss1 CAC×VA×V
49 sslin C×VA×VRA×BC×VRA×BA×V
50 rnss RA×BC×VRA×BA×VranRA×BC×VranRA×BA×V
51 48 49 50 3syl CAranRA×BC×VranRA×BA×V
52 ssn0 CACA
53 52 ancoms CCAA
54 inss1 A×VRA×V
55 ssdif A×VRA×VA×VRA×BA×VA×B
56 54 55 ax-mp A×VRA×BA×VA×B
57 incom A×VRA×B=RA×BA×V
58 indif2 A×VRA×B=A×VRA×B
59 57 58 eqtr3i RA×BA×V=A×VRA×B
60 difxp2 A×VB=A×VA×B
61 56 59 60 3sstr4i RA×BA×VA×VB
62 rnss RA×BA×VA×VBranRA×BA×VranA×VB
63 61 62 mp1i AranRA×BA×VranA×VB
64 rnxp AranA×VB=VB
65 63 64 sseqtrd AranRA×BA×VVB
66 disj2 ranRA×BA×VB=ranRA×BA×VVB
67 65 66 sylibr AranRA×BA×VB=
68 53 67 syl CCAranRA×BA×VB=
69 ssdisj ranRA×BC×VranRA×BA×VranRA×BA×VB=ranRA×BC×VB=
70 51 68 69 syl2an2 CCAranRA×BC×VB=
71 47 70 eqtrid CCARA×BCB=
72 disj3 RA×BCB=RA×BC=RA×BCB
73 71 72 sylib CCARA×BC=RA×BCB
74 73 eqcomd CCARA×BCB=RA×BC
75 42 74 uneq12d CCARA×BCBRA×BCB=RA×BC
76 20 75 eqtrid CCARCB=RA×BC
77 13 76 eqtr4id CCARA×BC=RCB
78 77 ancoms CACRA×BC=RCB
79 10 78 pm2.61dane CARA×BC=RCB