| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ima0 |
|
| 2 |
|
imaeq2 |
|
| 3 |
|
imaeq2 |
|
| 4 |
|
ima0 |
|
| 5 |
3 4
|
eqtrdi |
|
| 6 |
5
|
difeq1d |
|
| 7 |
|
0dif |
|
| 8 |
6 7
|
eqtrdi |
|
| 9 |
1 2 8
|
3eqtr4a |
|
| 10 |
9
|
adantl |
|
| 11 |
|
uncom |
|
| 12 |
|
un0 |
|
| 13 |
11 12
|
eqtr2i |
|
| 14 |
|
inundif |
|
| 15 |
14
|
imaeq1i |
|
| 16 |
|
imaundir |
|
| 17 |
15 16
|
eqtr3i |
|
| 18 |
17
|
difeq1i |
|
| 19 |
|
difundir |
|
| 20 |
18 19
|
eqtri |
|
| 21 |
|
inss2 |
|
| 22 |
|
imass1 |
|
| 23 |
|
ssdif |
|
| 24 |
21 22 23
|
mp2b |
|
| 25 |
|
xpima |
|
| 26 |
|
incom |
|
| 27 |
|
dfss2 |
|
| 28 |
27
|
biimpi |
|
| 29 |
26 28
|
eqtr3id |
|
| 30 |
29
|
adantl |
|
| 31 |
|
simpl |
|
| 32 |
30 31
|
eqnetrd |
|
| 33 |
|
neneq |
|
| 34 |
|
iffalse |
|
| 35 |
32 33 34
|
3syl |
|
| 36 |
25 35
|
eqtrid |
|
| 37 |
36
|
difeq1d |
|
| 38 |
|
difid |
|
| 39 |
37 38
|
eqtrdi |
|
| 40 |
24 39
|
sseqtrid |
|
| 41 |
|
ss0 |
|
| 42 |
40 41
|
syl |
|
| 43 |
|
df-ima |
|
| 44 |
|
df-res |
|
| 45 |
44
|
rneqi |
|
| 46 |
43 45
|
eqtri |
|
| 47 |
46
|
ineq1i |
|
| 48 |
|
xpss1 |
|
| 49 |
|
sslin |
|
| 50 |
|
rnss |
|
| 51 |
48 49 50
|
3syl |
|
| 52 |
|
ssn0 |
|
| 53 |
52
|
ancoms |
|
| 54 |
|
inss1 |
|
| 55 |
|
ssdif |
|
| 56 |
54 55
|
ax-mp |
|
| 57 |
|
incom |
|
| 58 |
|
indif2 |
|
| 59 |
57 58
|
eqtr3i |
|
| 60 |
|
difxp2 |
|
| 61 |
56 59 60
|
3sstr4i |
|
| 62 |
|
rnss |
|
| 63 |
61 62
|
mp1i |
|
| 64 |
|
rnxp |
|
| 65 |
63 64
|
sseqtrd |
|
| 66 |
|
disj2 |
|
| 67 |
65 66
|
sylibr |
|
| 68 |
53 67
|
syl |
|
| 69 |
|
ssdisj |
|
| 70 |
51 68 69
|
syl2an2 |
|
| 71 |
47 70
|
eqtrid |
|
| 72 |
|
disj3 |
|
| 73 |
71 72
|
sylib |
|
| 74 |
73
|
eqcomd |
|
| 75 |
42 74
|
uneq12d |
|
| 76 |
20 75
|
eqtrid |
|
| 77 |
13 76
|
eqtr4id |
|
| 78 |
77
|
ancoms |
|
| 79 |
10 78
|
pm2.61dane |
|