Metamath Proof Explorer


Theorem imasval

Description: Value of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses imasval.u φU=F𝑠R
imasval.v φV=BaseR
imasval.p +˙=+R
imasval.m ×˙=R
imasval.g G=ScalarR
imasval.k K=BaseG
imasval.q ·˙=R
imasval.i ,˙=𝑖R
imasval.j J=TopOpenR
imasval.e E=distR
imasval.n N=R
imasval.a φ˙=pVqVFpFqFp+˙q
imasval.t φ˙=pVqVFpFqFp×˙q
imasval.s φ˙=qVpK,xFqFp·˙q
imasval.w φI=pVqVFpFqp,˙q
imasval.o φO=JqTopF
imasval.d φD=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
imasval.l φ˙=FNF-1
imasval.f φF:VontoB
imasval.r φRZ
Assertion imasval φU=BasendxB+ndx˙ndx˙ScalarndxGndx˙𝑖ndxITopSetndxOndx˙distndxD

Proof

Step Hyp Ref Expression
1 imasval.u φU=F𝑠R
2 imasval.v φV=BaseR
3 imasval.p +˙=+R
4 imasval.m ×˙=R
5 imasval.g G=ScalarR
6 imasval.k K=BaseG
7 imasval.q ·˙=R
8 imasval.i ,˙=𝑖R
9 imasval.j J=TopOpenR
10 imasval.e E=distR
11 imasval.n N=R
12 imasval.a φ˙=pVqVFpFqFp+˙q
13 imasval.t φ˙=pVqVFpFqFp×˙q
14 imasval.s φ˙=qVpK,xFqFp·˙q
15 imasval.w φI=pVqVFpFqp,˙q
16 imasval.o φO=JqTopF
17 imasval.d φD=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
18 imasval.l φ˙=FNF-1
19 imasval.f φF:VontoB
20 imasval.r φRZ
21 df-imas 𝑠=fV,rVBaser/vBasendxranf+ndxpvqvfpfqfp+rqndxpvqvfpfqfprqScalarndxScalarrndxqvpBaseScalarr,xfqfprq𝑖ndxpvqvfpfqp𝑖rqTopSetndxTopOpenrqTopfndxfrf-1distndxxranf,yranfsupnranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg*<
22 21 a1i φ𝑠=fV,rVBaser/vBasendxranf+ndxpvqvfpfqfp+rqndxpvqvfpfqfprqScalarndxScalarrndxqvpBaseScalarr,xfqfprq𝑖ndxpvqvfpfqp𝑖rqTopSetndxTopOpenrqTopfndxfrf-1distndxxranf,yranfsupnranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg*<
23 fvexd φf=Fr=RBaserV
24 simplrl φf=Fr=Rv=Baserf=F
25 24 rneqd φf=Fr=Rv=Baserranf=ranF
26 forn F:VontoBranF=B
27 19 26 syl φranF=B
28 27 ad2antrr φf=Fr=Rv=BaserranF=B
29 25 28 eqtrd φf=Fr=Rv=Baserranf=B
30 29 opeq2d φf=Fr=Rv=BaserBasendxranf=BasendxB
31 simplrr φf=Fr=Rv=Baserr=R
32 31 fveq2d φf=Fr=Rv=BaserBaser=BaseR
33 simpr φf=Fr=Rv=Baserv=Baser
34 2 ad2antrr φf=Fr=Rv=BaserV=BaseR
35 32 33 34 3eqtr4d φf=Fr=Rv=Baserv=V
36 24 fveq1d φf=Fr=Rv=Baserfp=Fp
37 24 fveq1d φf=Fr=Rv=Baserfq=Fq
38 36 37 opeq12d φf=Fr=Rv=Baserfpfq=FpFq
39 31 fveq2d φf=Fr=Rv=Baser+r=+R
40 39 3 eqtr4di φf=Fr=Rv=Baser+r=+˙
41 40 oveqd φf=Fr=Rv=Baserp+rq=p+˙q
42 24 41 fveq12d φf=Fr=Rv=Baserfp+rq=Fp+˙q
43 38 42 opeq12d φf=Fr=Rv=Baserfpfqfp+rq=FpFqFp+˙q
44 43 sneqd φf=Fr=Rv=Baserfpfqfp+rq=FpFqFp+˙q
45 35 44 iuneq12d φf=Fr=Rv=Baserqvfpfqfp+rq=qVFpFqFp+˙q
46 35 45 iuneq12d φf=Fr=Rv=Baserpvqvfpfqfp+rq=pVqVFpFqFp+˙q
47 12 ad2antrr φf=Fr=Rv=Baser˙=pVqVFpFqFp+˙q
48 46 47 eqtr4d φf=Fr=Rv=Baserpvqvfpfqfp+rq=˙
49 48 opeq2d φf=Fr=Rv=Baser+ndxpvqvfpfqfp+rq=+ndx˙
50 31 fveq2d φf=Fr=Rv=Baserr=R
51 50 4 eqtr4di φf=Fr=Rv=Baserr=×˙
52 51 oveqd φf=Fr=Rv=Baserprq=p×˙q
53 24 52 fveq12d φf=Fr=Rv=Baserfprq=Fp×˙q
54 38 53 opeq12d φf=Fr=Rv=Baserfpfqfprq=FpFqFp×˙q
55 54 sneqd φf=Fr=Rv=Baserfpfqfprq=FpFqFp×˙q
56 35 55 iuneq12d φf=Fr=Rv=Baserqvfpfqfprq=qVFpFqFp×˙q
57 35 56 iuneq12d φf=Fr=Rv=Baserpvqvfpfqfprq=pVqVFpFqFp×˙q
58 13 ad2antrr φf=Fr=Rv=Baser˙=pVqVFpFqFp×˙q
59 57 58 eqtr4d φf=Fr=Rv=Baserpvqvfpfqfprq=˙
60 59 opeq2d φf=Fr=Rv=Baserndxpvqvfpfqfprq=ndx˙
61 30 49 60 tpeq123d φf=Fr=Rv=BaserBasendxranf+ndxpvqvfpfqfp+rqndxpvqvfpfqfprq=BasendxB+ndx˙ndx˙
62 31 fveq2d φf=Fr=Rv=BaserScalarr=ScalarR
63 62 5 eqtr4di φf=Fr=Rv=BaserScalarr=G
64 63 opeq2d φf=Fr=Rv=BaserScalarndxScalarr=ScalarndxG
65 63 fveq2d φf=Fr=Rv=BaserBaseScalarr=BaseG
66 65 6 eqtr4di φf=Fr=Rv=BaserBaseScalarr=K
67 37 sneqd φf=Fr=Rv=Baserfq=Fq
68 31 fveq2d φf=Fr=Rv=Baserr=R
69 68 7 eqtr4di φf=Fr=Rv=Baserr=·˙
70 69 oveqd φf=Fr=Rv=Baserprq=p·˙q
71 24 70 fveq12d φf=Fr=Rv=Baserfprq=Fp·˙q
72 66 67 71 mpoeq123dv φf=Fr=Rv=BaserpBaseScalarr,xfqfprq=pK,xFqFp·˙q
73 72 iuneq2d φf=Fr=Rv=BaserqVpBaseScalarr,xfqfprq=qVpK,xFqFp·˙q
74 35 iuneq1d φf=Fr=Rv=BaserqvpBaseScalarr,xfqfprq=qVpBaseScalarr,xfqfprq
75 14 ad2antrr φf=Fr=Rv=Baser˙=qVpK,xFqFp·˙q
76 73 74 75 3eqtr4d φf=Fr=Rv=BaserqvpBaseScalarr,xfqfprq=˙
77 76 opeq2d φf=Fr=Rv=BaserndxqvpBaseScalarr,xfqfprq=ndx˙
78 31 fveq2d φf=Fr=Rv=Baser𝑖r=𝑖R
79 78 8 eqtr4di φf=Fr=Rv=Baser𝑖r=,˙
80 79 oveqd φf=Fr=Rv=Baserp𝑖rq=p,˙q
81 38 80 opeq12d φf=Fr=Rv=Baserfpfqp𝑖rq=FpFqp,˙q
82 81 sneqd φf=Fr=Rv=Baserfpfqp𝑖rq=FpFqp,˙q
83 35 82 iuneq12d φf=Fr=Rv=Baserqvfpfqp𝑖rq=qVFpFqp,˙q
84 35 83 iuneq12d φf=Fr=Rv=Baserpvqvfpfqp𝑖rq=pVqVFpFqp,˙q
85 15 ad2antrr φf=Fr=Rv=BaserI=pVqVFpFqp,˙q
86 84 85 eqtr4d φf=Fr=Rv=Baserpvqvfpfqp𝑖rq=I
87 86 opeq2d φf=Fr=Rv=Baser𝑖ndxpvqvfpfqp𝑖rq=𝑖ndxI
88 64 77 87 tpeq123d φf=Fr=Rv=BaserScalarndxScalarrndxqvpBaseScalarr,xfqfprq𝑖ndxpvqvfpfqp𝑖rq=ScalarndxGndx˙𝑖ndxI
89 61 88 uneq12d φf=Fr=Rv=BaserBasendxranf+ndxpvqvfpfqfp+rqndxpvqvfpfqfprqScalarndxScalarrndxqvpBaseScalarr,xfqfprq𝑖ndxpvqvfpfqp𝑖rq=BasendxB+ndx˙ndx˙ScalarndxGndx˙𝑖ndxI
90 31 fveq2d φf=Fr=Rv=BaserTopOpenr=TopOpenR
91 90 9 eqtr4di φf=Fr=Rv=BaserTopOpenr=J
92 91 24 oveq12d φf=Fr=Rv=BaserTopOpenrqTopf=JqTopF
93 16 ad2antrr φf=Fr=Rv=BaserO=JqTopF
94 92 93 eqtr4d φf=Fr=Rv=BaserTopOpenrqTopf=O
95 94 opeq2d φf=Fr=Rv=BaserTopSetndxTopOpenrqTopf=TopSetndxO
96 31 fveq2d φf=Fr=Rv=Baserr=R
97 96 11 eqtr4di φf=Fr=Rv=Baserr=N
98 24 97 coeq12d φf=Fr=Rv=Baserfr=FN
99 24 cnveqd φf=Fr=Rv=Baserf-1=F-1
100 98 99 coeq12d φf=Fr=Rv=Baserfrf-1=FNF-1
101 18 ad2antrr φf=Fr=Rv=Baser˙=FNF-1
102 100 101 eqtr4d φf=Fr=Rv=Baserfrf-1=˙
103 102 opeq2d φf=Fr=Rv=Baserndxfrf-1=ndx˙
104 35 sqxpeqd φf=Fr=Rv=Baserv×v=V×V
105 104 oveq1d φf=Fr=Rv=Baserv×v1n=V×V1n
106 24 fveq1d φf=Fr=Rv=Baserf1sth1=F1sth1
107 106 eqeq1d φf=Fr=Rv=Baserf1sth1=xF1sth1=x
108 24 fveq1d φf=Fr=Rv=Baserf2ndhn=F2ndhn
109 108 eqeq1d φf=Fr=Rv=Baserf2ndhn=yF2ndhn=y
110 24 fveq1d φf=Fr=Rv=Baserf2ndhi=F2ndhi
111 24 fveq1d φf=Fr=Rv=Baserf1sthi+1=F1sthi+1
112 110 111 eqeq12d φf=Fr=Rv=Baserf2ndhi=f1sthi+1F2ndhi=F1sthi+1
113 112 ralbidv φf=Fr=Rv=Baseri1n1f2ndhi=f1sthi+1i1n1F2ndhi=F1sthi+1
114 107 109 113 3anbi123d φf=Fr=Rv=Baserf1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1
115 105 114 rabeqbidv φf=Fr=Rv=Baserhv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1=hV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1
116 31 fveq2d φf=Fr=Rv=Baserdistr=distR
117 116 10 eqtr4di φf=Fr=Rv=Baserdistr=E
118 117 coeq1d φf=Fr=Rv=Baserdistrg=Eg
119 118 oveq2d φf=Fr=Rv=Baser𝑠*distrg=𝑠*Eg
120 115 119 mpteq12dv φf=Fr=Rv=Baserghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg=ghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg
121 120 rneqd φf=Fr=Rv=Baserranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg=ranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg
122 121 iuneq2d φf=Fr=Rv=Basernranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg=nranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg
123 122 infeq1d φf=Fr=Rv=Basersupnranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg*<=supnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
124 29 29 123 mpoeq123dv φf=Fr=Rv=Baserxranf,yranfsupnranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg*<=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
125 17 ad2antrr φf=Fr=Rv=BaserD=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
126 124 125 eqtr4d φf=Fr=Rv=Baserxranf,yranfsupnranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg*<=D
127 126 opeq2d φf=Fr=Rv=Baserdistndxxranf,yranfsupnranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg*<=distndxD
128 95 103 127 tpeq123d φf=Fr=Rv=BaserTopSetndxTopOpenrqTopfndxfrf-1distndxxranf,yranfsupnranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg*<=TopSetndxOndx˙distndxD
129 89 128 uneq12d φf=Fr=Rv=BaserBasendxranf+ndxpvqvfpfqfp+rqndxpvqvfpfqfprqScalarndxScalarrndxqvpBaseScalarr,xfqfprq𝑖ndxpvqvfpfqp𝑖rqTopSetndxTopOpenrqTopfndxfrf-1distndxxranf,yranfsupnranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg*<=BasendxB+ndx˙ndx˙ScalarndxGndx˙𝑖ndxITopSetndxOndx˙distndxD
130 23 129 csbied φf=Fr=RBaser/vBasendxranf+ndxpvqvfpfqfp+rqndxpvqvfpfqfprqScalarndxScalarrndxqvpBaseScalarr,xfqfprq𝑖ndxpvqvfpfqp𝑖rqTopSetndxTopOpenrqTopfndxfrf-1distndxxranf,yranfsupnranghv×v1n|f1sth1=xf2ndhn=yi1n1f2ndhi=f1sthi+1𝑠*distrg*<=BasendxB+ndx˙ndx˙ScalarndxGndx˙𝑖ndxITopSetndxOndx˙distndxD
131 fof F:VontoBF:VB
132 19 131 syl φF:VB
133 fvex BaseRV
134 2 133 eqeltrdi φVV
135 132 134 fexd φFV
136 20 elexd φRV
137 tpex BasendxB+ndx˙ndx˙V
138 tpex ScalarndxGndx˙𝑖ndxIV
139 137 138 unex BasendxB+ndx˙ndx˙ScalarndxGndx˙𝑖ndxIV
140 tpex TopSetndxOndx˙distndxDV
141 139 140 unex BasendxB+ndx˙ndx˙ScalarndxGndx˙𝑖ndxITopSetndxOndx˙distndxDV
142 141 a1i φBasendxB+ndx˙ndx˙ScalarndxGndx˙𝑖ndxITopSetndxOndx˙distndxDV
143 22 130 135 136 142 ovmpod φF𝑠R=BasendxB+ndx˙ndx˙ScalarndxGndx˙𝑖ndxITopSetndxOndx˙distndxD
144 1 143 eqtrd φU=BasendxB+ndx˙ndx˙ScalarndxGndx˙𝑖ndxITopSetndxOndx˙distndxD