Metamath Proof Explorer


Theorem imasval

Description: Value of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses imasval.u φ U = F 𝑠 R
imasval.v φ V = Base R
imasval.p + ˙ = + R
imasval.m × ˙ = R
imasval.g G = Scalar R
imasval.k K = Base G
imasval.q · ˙ = R
imasval.i , ˙ = 𝑖 R
imasval.j J = TopOpen R
imasval.e E = dist R
imasval.n N = R
imasval.a φ ˙ = p V q V F p F q F p + ˙ q
imasval.t φ ˙ = p V q V F p F q F p × ˙ q
imasval.s φ ˙ = q V p K , x F q F p · ˙ q
imasval.w φ I = p V q V F p F q p , ˙ q
imasval.o φ O = J qTop F
imasval.d φ D = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
imasval.l φ ˙ = F N F -1
imasval.f φ F : V onto B
imasval.r φ R Z
Assertion imasval φ U = Base ndx B + ndx ˙ ndx ˙ Scalar ndx G ndx ˙ 𝑖 ndx I TopSet ndx O ndx ˙ dist ndx D

Proof

Step Hyp Ref Expression
1 imasval.u φ U = F 𝑠 R
2 imasval.v φ V = Base R
3 imasval.p + ˙ = + R
4 imasval.m × ˙ = R
5 imasval.g G = Scalar R
6 imasval.k K = Base G
7 imasval.q · ˙ = R
8 imasval.i , ˙ = 𝑖 R
9 imasval.j J = TopOpen R
10 imasval.e E = dist R
11 imasval.n N = R
12 imasval.a φ ˙ = p V q V F p F q F p + ˙ q
13 imasval.t φ ˙ = p V q V F p F q F p × ˙ q
14 imasval.s φ ˙ = q V p K , x F q F p · ˙ q
15 imasval.w φ I = p V q V F p F q p , ˙ q
16 imasval.o φ O = J qTop F
17 imasval.d φ D = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
18 imasval.l φ ˙ = F N F -1
19 imasval.f φ F : V onto B
20 imasval.r φ R Z
21 df-imas 𝑠 = f V , r V Base r / v Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <
22 21 a1i φ 𝑠 = f V , r V Base r / v Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <
23 fvexd φ f = F r = R Base r V
24 simplrl φ f = F r = R v = Base r f = F
25 24 rneqd φ f = F r = R v = Base r ran f = ran F
26 forn F : V onto B ran F = B
27 19 26 syl φ ran F = B
28 27 ad2antrr φ f = F r = R v = Base r ran F = B
29 25 28 eqtrd φ f = F r = R v = Base r ran f = B
30 29 opeq2d φ f = F r = R v = Base r Base ndx ran f = Base ndx B
31 simplrr φ f = F r = R v = Base r r = R
32 31 fveq2d φ f = F r = R v = Base r Base r = Base R
33 simpr φ f = F r = R v = Base r v = Base r
34 2 ad2antrr φ f = F r = R v = Base r V = Base R
35 32 33 34 3eqtr4d φ f = F r = R v = Base r v = V
36 24 fveq1d φ f = F r = R v = Base r f p = F p
37 24 fveq1d φ f = F r = R v = Base r f q = F q
38 36 37 opeq12d φ f = F r = R v = Base r f p f q = F p F q
39 31 fveq2d φ f = F r = R v = Base r + r = + R
40 39 3 syl6eqr φ f = F r = R v = Base r + r = + ˙
41 40 oveqd φ f = F r = R v = Base r p + r q = p + ˙ q
42 24 41 fveq12d φ f = F r = R v = Base r f p + r q = F p + ˙ q
43 38 42 opeq12d φ f = F r = R v = Base r f p f q f p + r q = F p F q F p + ˙ q
44 43 sneqd φ f = F r = R v = Base r f p f q f p + r q = F p F q F p + ˙ q
45 35 44 iuneq12d φ f = F r = R v = Base r q v f p f q f p + r q = q V F p F q F p + ˙ q
46 35 45 iuneq12d φ f = F r = R v = Base r p v q v f p f q f p + r q = p V q V F p F q F p + ˙ q
47 12 ad2antrr φ f = F r = R v = Base r ˙ = p V q V F p F q F p + ˙ q
48 46 47 eqtr4d φ f = F r = R v = Base r p v q v f p f q f p + r q = ˙
49 48 opeq2d φ f = F r = R v = Base r + ndx p v q v f p f q f p + r q = + ndx ˙
50 31 fveq2d φ f = F r = R v = Base r r = R
51 50 4 syl6eqr φ f = F r = R v = Base r r = × ˙
52 51 oveqd φ f = F r = R v = Base r p r q = p × ˙ q
53 24 52 fveq12d φ f = F r = R v = Base r f p r q = F p × ˙ q
54 38 53 opeq12d φ f = F r = R v = Base r f p f q f p r q = F p F q F p × ˙ q
55 54 sneqd φ f = F r = R v = Base r f p f q f p r q = F p F q F p × ˙ q
56 35 55 iuneq12d φ f = F r = R v = Base r q v f p f q f p r q = q V F p F q F p × ˙ q
57 35 56 iuneq12d φ f = F r = R v = Base r p v q v f p f q f p r q = p V q V F p F q F p × ˙ q
58 13 ad2antrr φ f = F r = R v = Base r ˙ = p V q V F p F q F p × ˙ q
59 57 58 eqtr4d φ f = F r = R v = Base r p v q v f p f q f p r q = ˙
60 59 opeq2d φ f = F r = R v = Base r ndx p v q v f p f q f p r q = ndx ˙
61 30 49 60 tpeq123d φ f = F r = R v = Base r Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q = Base ndx B + ndx ˙ ndx ˙
62 31 fveq2d φ f = F r = R v = Base r Scalar r = Scalar R
63 62 5 syl6eqr φ f = F r = R v = Base r Scalar r = G
64 63 opeq2d φ f = F r = R v = Base r Scalar ndx Scalar r = Scalar ndx G
65 63 fveq2d φ f = F r = R v = Base r Base Scalar r = Base G
66 65 6 syl6eqr φ f = F r = R v = Base r Base Scalar r = K
67 37 sneqd φ f = F r = R v = Base r f q = F q
68 31 fveq2d φ f = F r = R v = Base r r = R
69 68 7 syl6eqr φ f = F r = R v = Base r r = · ˙
70 69 oveqd φ f = F r = R v = Base r p r q = p · ˙ q
71 24 70 fveq12d φ f = F r = R v = Base r f p r q = F p · ˙ q
72 66 67 71 mpoeq123dv φ f = F r = R v = Base r p Base Scalar r , x f q f p r q = p K , x F q F p · ˙ q
73 72 iuneq2d φ f = F r = R v = Base r q V p Base Scalar r , x f q f p r q = q V p K , x F q F p · ˙ q
74 35 iuneq1d φ f = F r = R v = Base r q v p Base Scalar r , x f q f p r q = q V p Base Scalar r , x f q f p r q
75 14 ad2antrr φ f = F r = R v = Base r ˙ = q V p K , x F q F p · ˙ q
76 73 74 75 3eqtr4d φ f = F r = R v = Base r q v p Base Scalar r , x f q f p r q = ˙
77 76 opeq2d φ f = F r = R v = Base r ndx q v p Base Scalar r , x f q f p r q = ndx ˙
78 31 fveq2d φ f = F r = R v = Base r 𝑖 r = 𝑖 R
79 78 8 syl6eqr φ f = F r = R v = Base r 𝑖 r = , ˙
80 79 oveqd φ f = F r = R v = Base r p 𝑖 r q = p , ˙ q
81 38 80 opeq12d φ f = F r = R v = Base r f p f q p 𝑖 r q = F p F q p , ˙ q
82 81 sneqd φ f = F r = R v = Base r f p f q p 𝑖 r q = F p F q p , ˙ q
83 35 82 iuneq12d φ f = F r = R v = Base r q v f p f q p 𝑖 r q = q V F p F q p , ˙ q
84 35 83 iuneq12d φ f = F r = R v = Base r p v q v f p f q p 𝑖 r q = p V q V F p F q p , ˙ q
85 15 ad2antrr φ f = F r = R v = Base r I = p V q V F p F q p , ˙ q
86 84 85 eqtr4d φ f = F r = R v = Base r p v q v f p f q p 𝑖 r q = I
87 86 opeq2d φ f = F r = R v = Base r 𝑖 ndx p v q v f p f q p 𝑖 r q = 𝑖 ndx I
88 64 77 87 tpeq123d φ f = F r = R v = Base r Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q = Scalar ndx G ndx ˙ 𝑖 ndx I
89 61 88 uneq12d φ f = F r = R v = Base r Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q = Base ndx B + ndx ˙ ndx ˙ Scalar ndx G ndx ˙ 𝑖 ndx I
90 31 fveq2d φ f = F r = R v = Base r TopOpen r = TopOpen R
91 90 9 syl6eqr φ f = F r = R v = Base r TopOpen r = J
92 91 24 oveq12d φ f = F r = R v = Base r TopOpen r qTop f = J qTop F
93 16 ad2antrr φ f = F r = R v = Base r O = J qTop F
94 92 93 eqtr4d φ f = F r = R v = Base r TopOpen r qTop f = O
95 94 opeq2d φ f = F r = R v = Base r TopSet ndx TopOpen r qTop f = TopSet ndx O
96 31 fveq2d φ f = F r = R v = Base r r = R
97 96 11 syl6eqr φ f = F r = R v = Base r r = N
98 24 97 coeq12d φ f = F r = R v = Base r f r = F N
99 24 cnveqd φ f = F r = R v = Base r f -1 = F -1
100 98 99 coeq12d φ f = F r = R v = Base r f r f -1 = F N F -1
101 18 ad2antrr φ f = F r = R v = Base r ˙ = F N F -1
102 100 101 eqtr4d φ f = F r = R v = Base r f r f -1 = ˙
103 102 opeq2d φ f = F r = R v = Base r ndx f r f -1 = ndx ˙
104 35 sqxpeqd φ f = F r = R v = Base r v × v = V × V
105 104 oveq1d φ f = F r = R v = Base r v × v 1 n = V × V 1 n
106 24 fveq1d φ f = F r = R v = Base r f 1 st h 1 = F 1 st h 1
107 106 eqeq1d φ f = F r = R v = Base r f 1 st h 1 = x F 1 st h 1 = x
108 24 fveq1d φ f = F r = R v = Base r f 2 nd h n = F 2 nd h n
109 108 eqeq1d φ f = F r = R v = Base r f 2 nd h n = y F 2 nd h n = y
110 24 fveq1d φ f = F r = R v = Base r f 2 nd h i = F 2 nd h i
111 24 fveq1d φ f = F r = R v = Base r f 1 st h i + 1 = F 1 st h i + 1
112 110 111 eqeq12d φ f = F r = R v = Base r f 2 nd h i = f 1 st h i + 1 F 2 nd h i = F 1 st h i + 1
113 112 ralbidv φ f = F r = R v = Base r i 1 n 1 f 2 nd h i = f 1 st h i + 1 i 1 n 1 F 2 nd h i = F 1 st h i + 1
114 107 109 113 3anbi123d φ f = F r = R v = Base r f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1
115 105 114 rabeqbidv φ f = F r = R v = Base r h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 = h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1
116 31 fveq2d φ f = F r = R v = Base r dist r = dist R
117 116 10 syl6eqr φ f = F r = R v = Base r dist r = E
118 117 coeq1d φ f = F r = R v = Base r dist r g = E g
119 118 oveq2d φ f = F r = R v = Base r 𝑠 * dist r g = 𝑠 * E g
120 115 119 mpteq12dv φ f = F r = R v = Base r g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g = g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g
121 120 rneqd φ f = F r = R v = Base r ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g = ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g
122 121 iuneq2d φ f = F r = R v = Base r n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g = n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g
123 122 infeq1d φ f = F r = R v = Base r sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * < = sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
124 29 29 123 mpoeq123dv φ f = F r = R v = Base r x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * < = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
125 17 ad2antrr φ f = F r = R v = Base r D = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
126 124 125 eqtr4d φ f = F r = R v = Base r x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * < = D
127 126 opeq2d φ f = F r = R v = Base r dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * < = dist ndx D
128 95 103 127 tpeq123d φ f = F r = R v = Base r TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * < = TopSet ndx O ndx ˙ dist ndx D
129 89 128 uneq12d φ f = F r = R v = Base r Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * < = Base ndx B + ndx ˙ ndx ˙ Scalar ndx G ndx ˙ 𝑖 ndx I TopSet ndx O ndx ˙ dist ndx D
130 23 129 csbied φ f = F r = R Base r / v Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * < = Base ndx B + ndx ˙ ndx ˙ Scalar ndx G ndx ˙ 𝑖 ndx I TopSet ndx O ndx ˙ dist ndx D
131 fof F : V onto B F : V B
132 19 131 syl φ F : V B
133 fvex Base R V
134 2 133 eqeltrdi φ V V
135 fex F : V B V V F V
136 132 134 135 syl2anc φ F V
137 20 elexd φ R V
138 tpex Base ndx B + ndx ˙ ndx ˙ V
139 tpex Scalar ndx G ndx ˙ 𝑖 ndx I V
140 138 139 unex Base ndx B + ndx ˙ ndx ˙ Scalar ndx G ndx ˙ 𝑖 ndx I V
141 tpex TopSet ndx O ndx ˙ dist ndx D V
142 140 141 unex Base ndx B + ndx ˙ ndx ˙ Scalar ndx G ndx ˙ 𝑖 ndx I TopSet ndx O ndx ˙ dist ndx D V
143 142 a1i φ Base ndx B + ndx ˙ ndx ˙ Scalar ndx G ndx ˙ 𝑖 ndx I TopSet ndx O ndx ˙ dist ndx D V
144 22 130 136 137 143 ovmpod φ F 𝑠 R = Base ndx B + ndx ˙ ndx ˙ Scalar ndx G ndx ˙ 𝑖 ndx I TopSet ndx O ndx ˙ dist ndx D
145 1 144 eqtrd φ U = Base ndx B + ndx ˙ ndx ˙ Scalar ndx G ndx ˙ 𝑖 ndx I TopSet ndx O ndx ˙ dist ndx D