Metamath Proof Explorer


Theorem infpwfien

Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion infpwfien AdomcardωA𝒫AFinA

Proof

Step Hyp Ref Expression
1 infxpidm2 AdomcardωAA×AA
2 infn0 ωAA
3 2 adantl AdomcardωAA
4 fseqen A×AAAnωAnω×A
5 1 3 4 syl2anc AdomcardωAnωAnω×A
6 xpdom1g AdomcardωAω×AA×A
7 domentr ω×AA×AA×AAω×AA
8 6 1 7 syl2anc AdomcardωAω×AA
9 endomtr nωAnω×Aω×AAnωAnA
10 5 8 9 syl2anc AdomcardωAnωAnA
11 numdom AdomcardnωAnAnωAndomcard
12 10 11 syldan AdomcardωAnωAndomcard
13 eliun xnωAnnωxAn
14 elmapi xAnx:nA
15 14 ad2antll AdomcardωAnωxAnx:nA
16 15 frnd AdomcardωAnωxAnranxA
17 vex xV
18 17 rnex ranxV
19 18 elpw ranx𝒫AranxA
20 16 19 sylibr AdomcardωAnωxAnranx𝒫A
21 simprl AdomcardωAnωxAnnω
22 ssid nn
23 ssnnfi nωnnnFin
24 21 22 23 sylancl AdomcardωAnωxAnnFin
25 ffn x:nAxFnn
26 dffn4 xFnnx:nontoranx
27 25 26 sylib x:nAx:nontoranx
28 15 27 syl AdomcardωAnωxAnx:nontoranx
29 fofi nFinx:nontoranxranxFin
30 24 28 29 syl2anc AdomcardωAnωxAnranxFin
31 20 30 elind AdomcardωAnωxAnranx𝒫AFin
32 31 expr AdomcardωAnωxAnranx𝒫AFin
33 32 rexlimdva AdomcardωAnωxAnranx𝒫AFin
34 13 33 biimtrid AdomcardωAxnωAnranx𝒫AFin
35 34 imp AdomcardωAxnωAnranx𝒫AFin
36 35 fmpttd AdomcardωAxnωAnranx:nωAn𝒫AFin
37 36 ffnd AdomcardωAxnωAnranxFnnωAn
38 36 frnd AdomcardωAranxnωAnranx𝒫AFin
39 simpr AdomcardωAy𝒫AFiny𝒫AFin
40 39 elin2d AdomcardωAy𝒫AFinyFin
41 isfi yFinmωym
42 40 41 sylib AdomcardωAy𝒫AFinmωym
43 ensym ymmy
44 bren myxx:m1-1 ontoy
45 43 44 sylib ymxx:m1-1 ontoy
46 simprl AdomcardωAy𝒫AFinmωx:m1-1 ontoymω
47 f1of x:m1-1 ontoyx:my
48 47 ad2antll AdomcardωAy𝒫AFinmωx:m1-1 ontoyx:my
49 simplr AdomcardωAy𝒫AFinmωx:m1-1 ontoyy𝒫AFin
50 49 elin1d AdomcardωAy𝒫AFinmωx:m1-1 ontoyy𝒫A
51 50 elpwid AdomcardωAy𝒫AFinmωx:m1-1 ontoyyA
52 48 51 fssd AdomcardωAy𝒫AFinmωx:m1-1 ontoyx:mA
53 simplll AdomcardωAy𝒫AFinmωx:m1-1 ontoyAdomcard
54 vex mV
55 elmapg AdomcardmVxAmx:mA
56 53 54 55 sylancl AdomcardωAy𝒫AFinmωx:m1-1 ontoyxAmx:mA
57 52 56 mpbird AdomcardωAy𝒫AFinmωx:m1-1 ontoyxAm
58 oveq2 n=mAn=Am
59 58 eleq2d n=mxAnxAm
60 59 rspcev mωxAmnωxAn
61 46 57 60 syl2anc AdomcardωAy𝒫AFinmωx:m1-1 ontoynωxAn
62 61 13 sylibr AdomcardωAy𝒫AFinmωx:m1-1 ontoyxnωAn
63 f1ofo x:m1-1 ontoyx:montoy
64 63 ad2antll AdomcardωAy𝒫AFinmωx:m1-1 ontoyx:montoy
65 forn x:montoyranx=y
66 64 65 syl AdomcardωAy𝒫AFinmωx:m1-1 ontoyranx=y
67 66 eqcomd AdomcardωAy𝒫AFinmωx:m1-1 ontoyy=ranx
68 62 67 jca AdomcardωAy𝒫AFinmωx:m1-1 ontoyxnωAny=ranx
69 68 expr AdomcardωAy𝒫AFinmωx:m1-1 ontoyxnωAny=ranx
70 69 eximdv AdomcardωAy𝒫AFinmωxx:m1-1 ontoyxxnωAny=ranx
71 45 70 syl5 AdomcardωAy𝒫AFinmωymxxnωAny=ranx
72 71 rexlimdva AdomcardωAy𝒫AFinmωymxxnωAny=ranx
73 42 72 mpd AdomcardωAy𝒫AFinxxnωAny=ranx
74 73 ex AdomcardωAy𝒫AFinxxnωAny=ranx
75 eqid xnωAnranx=xnωAnranx
76 75 elrnmpt yVyranxnωAnranxxnωAny=ranx
77 76 elv yranxnωAnranxxnωAny=ranx
78 df-rex xnωAny=ranxxxnωAny=ranx
79 77 78 bitri yranxnωAnranxxxnωAny=ranx
80 74 79 syl6ibr AdomcardωAy𝒫AFinyranxnωAnranx
81 80 ssrdv AdomcardωA𝒫AFinranxnωAnranx
82 38 81 eqssd AdomcardωAranxnωAnranx=𝒫AFin
83 df-fo xnωAnranx:nωAnonto𝒫AFinxnωAnranxFnnωAnranxnωAnranx=𝒫AFin
84 37 82 83 sylanbrc AdomcardωAxnωAnranx:nωAnonto𝒫AFin
85 fodomnum nωAndomcardxnωAnranx:nωAnonto𝒫AFin𝒫AFinnωAn
86 12 84 85 sylc AdomcardωA𝒫AFinnωAn
87 domtr 𝒫AFinnωAnnωAnA𝒫AFinA
88 86 10 87 syl2anc AdomcardωA𝒫AFinA
89 pwexg Adomcard𝒫AV
90 89 adantr AdomcardωA𝒫AV
91 inex1g 𝒫AV𝒫AFinV
92 90 91 syl AdomcardωA𝒫AFinV
93 infpwfidom 𝒫AFinVA𝒫AFin
94 92 93 syl AdomcardωAA𝒫AFin
95 sbth 𝒫AFinAA𝒫AFin𝒫AFinA
96 88 94 95 syl2anc AdomcardωA𝒫AFinA