Metamath Proof Explorer


Theorem isf32lem2

Description: Lemma for isfin3-2 . Non-minimum implies that there is always another decrease. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φ F : ω 𝒫 G
isf32lem.b φ x ω F suc x F x
isf32lem.c φ ¬ ran F ran F
Assertion isf32lem2 φ A ω a ω A a F suc a F a

Proof

Step Hyp Ref Expression
1 isf32lem.a φ F : ω 𝒫 G
2 isf32lem.b φ x ω F suc x F x
3 isf32lem.c φ ¬ ran F ran F
4 3 adantr φ A ω ¬ ran F ran F
5 1 ffnd φ F Fn ω
6 peano2 A ω suc A ω
7 fnfvelrn F Fn ω suc A ω F suc A ran F
8 5 6 7 syl2an φ A ω F suc A ran F
9 8 adantr φ A ω a ω A a F suc a = F a F suc A ran F
10 intss1 F suc A ran F ran F F suc A
11 9 10 syl φ A ω a ω A a F suc a = F a ran F F suc A
12 fvelrnb F Fn ω b ran F c ω F c = b
13 5 12 syl φ b ran F c ω F c = b
14 13 ad2antrr φ A ω a ω A a F suc a = F a b ran F c ω F c = b
15 simplrr φ A ω a ω A a F suc a = F a c ω suc A c c ω
16 6 ad3antlr φ A ω a ω A a F suc a = F a c ω suc A c suc A ω
17 simpr φ A ω a ω A a F suc a = F a c ω suc A c suc A c
18 simplrl φ A ω a ω A a F suc a = F a c ω suc A c a ω A a F suc a = F a
19 fveq2 b = suc A F b = F suc A
20 19 eqeq2d b = suc A F suc A = F b F suc A = F suc A
21 20 imbi2d b = suc A a ω A a F suc a = F a F suc A = F b a ω A a F suc a = F a F suc A = F suc A
22 fveq2 b = d F b = F d
23 22 eqeq2d b = d F suc A = F b F suc A = F d
24 23 imbi2d b = d a ω A a F suc a = F a F suc A = F b a ω A a F suc a = F a F suc A = F d
25 fveq2 b = suc d F b = F suc d
26 25 eqeq2d b = suc d F suc A = F b F suc A = F suc d
27 26 imbi2d b = suc d a ω A a F suc a = F a F suc A = F b a ω A a F suc a = F a F suc A = F suc d
28 fveq2 b = c F b = F c
29 28 eqeq2d b = c F suc A = F b F suc A = F c
30 29 imbi2d b = c a ω A a F suc a = F a F suc A = F b a ω A a F suc a = F a F suc A = F c
31 eqid F suc A = F suc A
32 31 2a1i suc A ω a ω A a F suc a = F a F suc A = F suc A
33 elex suc A ω suc A V
34 sucexb A V suc A V
35 33 34 sylibr suc A ω A V
36 35 adantl d ω suc A ω A V
37 sucssel A V suc A d A d
38 36 37 syl d ω suc A ω suc A d A d
39 38 imp d ω suc A ω suc A d A d
40 eleq2w a = d A a A d
41 suceq a = d suc a = suc d
42 41 fveq2d a = d F suc a = F suc d
43 fveq2 a = d F a = F d
44 42 43 eqeq12d a = d F suc a = F a F suc d = F d
45 40 44 imbi12d a = d A a F suc a = F a A d F suc d = F d
46 45 rspcv d ω a ω A a F suc a = F a A d F suc d = F d
47 46 com23 d ω A d a ω A a F suc a = F a F suc d = F d
48 47 ad2antrr d ω suc A ω suc A d A d a ω A a F suc a = F a F suc d = F d
49 39 48 mpd d ω suc A ω suc A d a ω A a F suc a = F a F suc d = F d
50 eqtr3 F suc A = F d F suc d = F d F suc A = F suc d
51 50 expcom F suc d = F d F suc A = F d F suc A = F suc d
52 49 51 syl6 d ω suc A ω suc A d a ω A a F suc a = F a F suc A = F d F suc A = F suc d
53 52 a2d d ω suc A ω suc A d a ω A a F suc a = F a F suc A = F d a ω A a F suc a = F a F suc A = F suc d
54 21 24 27 30 32 53 findsg c ω suc A ω suc A c a ω A a F suc a = F a F suc A = F c
55 54 impr c ω suc A ω suc A c a ω A a F suc a = F a F suc A = F c
56 15 16 17 18 55 syl22anc φ A ω a ω A a F suc a = F a c ω suc A c F suc A = F c
57 eqimss F suc A = F c F suc A F c
58 56 57 syl φ A ω a ω A a F suc a = F a c ω suc A c F suc A F c
59 6 ad3antlr φ A ω a ω A a F suc a = F a c ω c suc A suc A ω
60 simplrr φ A ω a ω A a F suc a = F a c ω c suc A c ω
61 simpr φ A ω a ω A a F suc a = F a c ω c suc A c suc A
62 simplll φ A ω a ω A a F suc a = F a c ω c suc A φ
63 1 2 3 isf32lem1 suc A ω c ω c suc A φ F suc A F c
64 59 60 61 62 63 syl22anc φ A ω a ω A a F suc a = F a c ω c suc A F suc A F c
65 nnord suc A ω Ord suc A
66 6 65 syl A ω Ord suc A
67 66 ad2antlr φ A ω a ω A a F suc a = F a c ω Ord suc A
68 nnord c ω Ord c
69 68 ad2antll φ A ω a ω A a F suc a = F a c ω Ord c
70 ordtri2or2 Ord suc A Ord c suc A c c suc A
71 67 69 70 syl2anc φ A ω a ω A a F suc a = F a c ω suc A c c suc A
72 58 64 71 mpjaodan φ A ω a ω A a F suc a = F a c ω F suc A F c
73 72 anassrs φ A ω a ω A a F suc a = F a c ω F suc A F c
74 sseq2 F c = b F suc A F c F suc A b
75 73 74 syl5ibcom φ A ω a ω A a F suc a = F a c ω F c = b F suc A b
76 75 rexlimdva φ A ω a ω A a F suc a = F a c ω F c = b F suc A b
77 14 76 sylbid φ A ω a ω A a F suc a = F a b ran F F suc A b
78 77 ralrimiv φ A ω a ω A a F suc a = F a b ran F F suc A b
79 ssint F suc A ran F b ran F F suc A b
80 78 79 sylibr φ A ω a ω A a F suc a = F a F suc A ran F
81 11 80 eqssd φ A ω a ω A a F suc a = F a ran F = F suc A
82 81 9 eqeltrd φ A ω a ω A a F suc a = F a ran F ran F
83 4 82 mtand φ A ω ¬ a ω A a F suc a = F a
84 rexnal a ω ¬ A a F suc a = F a ¬ a ω A a F suc a = F a
85 83 84 sylibr φ A ω a ω ¬ A a F suc a = F a
86 suceq x = a suc x = suc a
87 86 fveq2d x = a F suc x = F suc a
88 fveq2 x = a F x = F a
89 87 88 sseq12d x = a F suc x F x F suc a F a
90 89 cbvralvw x ω F suc x F x a ω F suc a F a
91 2 90 sylib φ a ω F suc a F a
92 91 adantr φ A ω a ω F suc a F a
93 pm4.61 ¬ A a F suc a = F a A a ¬ F suc a = F a
94 dfpss2 F suc a F a F suc a F a ¬ F suc a = F a
95 94 simplbi2 F suc a F a ¬ F suc a = F a F suc a F a
96 95 anim2d F suc a F a A a ¬ F suc a = F a A a F suc a F a
97 93 96 syl5bi F suc a F a ¬ A a F suc a = F a A a F suc a F a
98 97 ralimi a ω F suc a F a a ω ¬ A a F suc a = F a A a F suc a F a
99 rexim a ω ¬ A a F suc a = F a A a F suc a F a a ω ¬ A a F suc a = F a a ω A a F suc a F a
100 92 98 99 3syl φ A ω a ω ¬ A a F suc a = F a a ω A a F suc a F a
101 85 100 mpd φ A ω a ω A a F suc a F a