| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isf32lem.a |  | 
						
							| 2 |  | isf32lem.b |  | 
						
							| 3 |  | isf32lem.c |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 | 1 | ffnd |  | 
						
							| 6 |  | peano2 |  | 
						
							| 7 |  | fnfvelrn |  | 
						
							| 8 | 5 6 7 | syl2an |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | intss1 |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 |  | fvelrnb |  | 
						
							| 13 | 5 12 | syl |  | 
						
							| 14 | 13 | ad2antrr |  | 
						
							| 15 |  | simplrr |  | 
						
							| 16 | 6 | ad3antlr |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 |  | simplrl |  | 
						
							| 19 |  | fveq2 |  | 
						
							| 20 | 19 | eqeq2d |  | 
						
							| 21 | 20 | imbi2d |  | 
						
							| 22 |  | fveq2 |  | 
						
							| 23 | 22 | eqeq2d |  | 
						
							| 24 | 23 | imbi2d |  | 
						
							| 25 |  | fveq2 |  | 
						
							| 26 | 25 | eqeq2d |  | 
						
							| 27 | 26 | imbi2d |  | 
						
							| 28 |  | fveq2 |  | 
						
							| 29 | 28 | eqeq2d |  | 
						
							| 30 | 29 | imbi2d |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 31 | 2a1i |  | 
						
							| 33 |  | elex |  | 
						
							| 34 |  | sucexb |  | 
						
							| 35 | 33 34 | sylibr |  | 
						
							| 36 | 35 | adantl |  | 
						
							| 37 |  | sucssel |  | 
						
							| 38 | 36 37 | syl |  | 
						
							| 39 | 38 | imp |  | 
						
							| 40 |  | eleq2w |  | 
						
							| 41 |  | suceq |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 |  | fveq2 |  | 
						
							| 44 | 42 43 | eqeq12d |  | 
						
							| 45 | 40 44 | imbi12d |  | 
						
							| 46 | 45 | rspcv |  | 
						
							| 47 | 46 | com23 |  | 
						
							| 48 | 47 | ad2antrr |  | 
						
							| 49 | 39 48 | mpd |  | 
						
							| 50 |  | eqtr3 |  | 
						
							| 51 | 50 | expcom |  | 
						
							| 52 | 49 51 | syl6 |  | 
						
							| 53 | 52 | a2d |  | 
						
							| 54 | 21 24 27 30 32 53 | findsg |  | 
						
							| 55 | 54 | impr |  | 
						
							| 56 | 15 16 17 18 55 | syl22anc |  | 
						
							| 57 |  | eqimss |  | 
						
							| 58 | 56 57 | syl |  | 
						
							| 59 | 6 | ad3antlr |  | 
						
							| 60 |  | simplrr |  | 
						
							| 61 |  | simpr |  | 
						
							| 62 |  | simplll |  | 
						
							| 63 | 1 2 3 | isf32lem1 |  | 
						
							| 64 | 59 60 61 62 63 | syl22anc |  | 
						
							| 65 |  | nnord |  | 
						
							| 66 | 6 65 | syl |  | 
						
							| 67 | 66 | ad2antlr |  | 
						
							| 68 |  | nnord |  | 
						
							| 69 | 68 | ad2antll |  | 
						
							| 70 |  | ordtri2or2 |  | 
						
							| 71 | 67 69 70 | syl2anc |  | 
						
							| 72 | 58 64 71 | mpjaodan |  | 
						
							| 73 | 72 | anassrs |  | 
						
							| 74 |  | sseq2 |  | 
						
							| 75 | 73 74 | syl5ibcom |  | 
						
							| 76 | 75 | rexlimdva |  | 
						
							| 77 | 14 76 | sylbid |  | 
						
							| 78 | 77 | ralrimiv |  | 
						
							| 79 |  | ssint |  | 
						
							| 80 | 78 79 | sylibr |  | 
						
							| 81 | 11 80 | eqssd |  | 
						
							| 82 | 81 9 | eqeltrd |  | 
						
							| 83 | 4 82 | mtand |  | 
						
							| 84 |  | rexnal |  | 
						
							| 85 | 83 84 | sylibr |  | 
						
							| 86 |  | suceq |  | 
						
							| 87 | 86 | fveq2d |  | 
						
							| 88 |  | fveq2 |  | 
						
							| 89 | 87 88 | sseq12d |  | 
						
							| 90 | 89 | cbvralvw |  | 
						
							| 91 | 2 90 | sylib |  | 
						
							| 92 | 91 | adantr |  | 
						
							| 93 |  | pm4.61 |  | 
						
							| 94 |  | dfpss2 |  | 
						
							| 95 | 94 | simplbi2 |  | 
						
							| 96 | 95 | anim2d |  | 
						
							| 97 | 93 96 | biimtrid |  | 
						
							| 98 | 97 | ralimi |  | 
						
							| 99 |  | rexim |  | 
						
							| 100 | 92 98 99 | 3syl |  | 
						
							| 101 | 85 100 | mpd |  |