| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubdrg.s |
|
| 2 |
|
issubdrg.z |
|
| 3 |
|
issubdrg.i |
|
| 4 |
|
simpllr |
|
| 5 |
1
|
subrgring |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
simpr |
|
| 8 |
|
eldifsn |
|
| 9 |
7 8
|
sylib |
|
| 10 |
9
|
simpld |
|
| 11 |
1
|
subrgbas |
|
| 12 |
4 11
|
syl |
|
| 13 |
10 12
|
eleqtrd |
|
| 14 |
9
|
simprd |
|
| 15 |
1 2
|
subrg0 |
|
| 16 |
4 15
|
syl |
|
| 17 |
14 16
|
neeqtrd |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
18 19 20
|
drngunit |
|
| 22 |
21
|
ad2antlr |
|
| 23 |
13 17 22
|
mpbir2and |
|
| 24 |
|
eqid |
|
| 25 |
19 24 18
|
ringinvcl |
|
| 26 |
6 23 25
|
syl2anc |
|
| 27 |
1 3 19 24
|
subrginv |
|
| 28 |
4 23 27
|
syl2anc |
|
| 29 |
26 28 12
|
3eltr4d |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
5
|
ad2antlr |
|
| 32 |
|
eqid |
|
| 33 |
1 32 19
|
subrguss |
|
| 34 |
33
|
ad2antlr |
|
| 35 |
|
eqid |
|
| 36 |
35 32 2
|
isdrng |
|
| 37 |
36
|
simprbi |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
34 38
|
sseqtrd |
|
| 40 |
18 19
|
unitss |
|
| 41 |
11
|
ad2antlr |
|
| 42 |
40 41
|
sseqtrrid |
|
| 43 |
39 42
|
ssind |
|
| 44 |
35
|
subrgss |
|
| 45 |
44
|
ad2antlr |
|
| 46 |
|
difin2 |
|
| 47 |
45 46
|
syl |
|
| 48 |
43 47
|
sseqtrrd |
|
| 49 |
44
|
ad2antlr |
|
| 50 |
|
simprl |
|
| 51 |
50 8
|
sylib |
|
| 52 |
51
|
simpld |
|
| 53 |
49 52
|
sseldd |
|
| 54 |
51
|
simprd |
|
| 55 |
35 32 2
|
drngunit |
|
| 56 |
55
|
ad2antrr |
|
| 57 |
53 54 56
|
mpbir2and |
|
| 58 |
|
simprr |
|
| 59 |
1 32 19 3
|
subrgunit |
|
| 60 |
59
|
ad2antlr |
|
| 61 |
57 52 58 60
|
mpbir3and |
|
| 62 |
61
|
expr |
|
| 63 |
62
|
ralimdva |
|
| 64 |
63
|
imp |
|
| 65 |
|
dfss3 |
|
| 66 |
64 65
|
sylibr |
|
| 67 |
48 66
|
eqssd |
|
| 68 |
15
|
ad2antlr |
|
| 69 |
68
|
sneqd |
|
| 70 |
41 69
|
difeq12d |
|
| 71 |
67 70
|
eqtrd |
|
| 72 |
18 19 20
|
isdrng |
|
| 73 |
31 71 72
|
sylanbrc |
|
| 74 |
30 73
|
impbida |
|