Metamath Proof Explorer


Theorem issubg2

Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses issubg2.b B=BaseG
issubg2.p +˙=+G
issubg2.i I=invgG
Assertion issubg2 GGrpSSubGrpGSBSxSySx+˙ySIxS

Proof

Step Hyp Ref Expression
1 issubg2.b B=BaseG
2 issubg2.p +˙=+G
3 issubg2.i I=invgG
4 1 subgss SSubGrpGSB
5 eqid G𝑠S=G𝑠S
6 5 subgbas SSubGrpGS=BaseG𝑠S
7 5 subggrp SSubGrpGG𝑠SGrp
8 eqid BaseG𝑠S=BaseG𝑠S
9 8 grpbn0 G𝑠SGrpBaseG𝑠S
10 7 9 syl SSubGrpGBaseG𝑠S
11 6 10 eqnetrd SSubGrpGS
12 2 subgcl SSubGrpGxSySx+˙yS
13 12 3expa SSubGrpGxSySx+˙yS
14 13 ralrimiva SSubGrpGxSySx+˙yS
15 3 subginvcl SSubGrpGxSIxS
16 14 15 jca SSubGrpGxSySx+˙ySIxS
17 16 ralrimiva SSubGrpGxSySx+˙ySIxS
18 4 11 17 3jca SSubGrpGSBSxSySx+˙ySIxS
19 simpl GGrpSBSxSySx+˙ySIxSGGrp
20 simpr1 GGrpSBSxSySx+˙ySIxSSB
21 5 1 ressbas2 SBS=BaseG𝑠S
22 20 21 syl GGrpSBSxSySx+˙ySIxSS=BaseG𝑠S
23 fvex BaseG𝑠SV
24 22 23 eqeltrdi GGrpSBSxSySx+˙ySIxSSV
25 5 2 ressplusg SV+˙=+G𝑠S
26 24 25 syl GGrpSBSxSySx+˙ySIxS+˙=+G𝑠S
27 simpr3 GGrpSBSxSySx+˙ySIxSxSySx+˙ySIxS
28 simpl ySx+˙ySIxSySx+˙yS
29 28 ralimi xSySx+˙ySIxSxSySx+˙yS
30 27 29 syl GGrpSBSxSySx+˙ySIxSxSySx+˙yS
31 oveq1 x=ux+˙y=u+˙y
32 31 eleq1d x=ux+˙ySu+˙yS
33 oveq2 y=vu+˙y=u+˙v
34 33 eleq1d y=vu+˙ySu+˙vS
35 32 34 rspc2v uSvSxSySx+˙ySu+˙vS
36 30 35 syl5com GGrpSBSxSySx+˙ySIxSuSvSu+˙vS
37 36 3impib GGrpSBSxSySx+˙ySIxSuSvSu+˙vS
38 20 sseld GGrpSBSxSySx+˙ySIxSuSuB
39 20 sseld GGrpSBSxSySx+˙ySIxSvSvB
40 20 sseld GGrpSBSxSySx+˙ySIxSwSwB
41 38 39 40 3anim123d GGrpSBSxSySx+˙ySIxSuSvSwSuBvBwB
42 41 imp GGrpSBSxSySx+˙ySIxSuSvSwSuBvBwB
43 1 2 grpass GGrpuBvBwBu+˙v+˙w=u+˙v+˙w
44 43 adantlr GGrpSBSxSySx+˙ySIxSuBvBwBu+˙v+˙w=u+˙v+˙w
45 42 44 syldan GGrpSBSxSySx+˙ySIxSuSvSwSu+˙v+˙w=u+˙v+˙w
46 simpr2 GGrpSBSxSySx+˙ySIxSS
47 n0 SuuS
48 46 47 sylib GGrpSBSxSySx+˙ySIxSuuS
49 20 sselda GGrpSBSxSySx+˙ySIxSuSuB
50 eqid 0G=0G
51 1 2 50 3 grplinv GGrpuBIu+˙u=0G
52 51 adantlr GGrpSBSxSySx+˙ySIxSuBIu+˙u=0G
53 49 52 syldan GGrpSBSxSySx+˙ySIxSuSIu+˙u=0G
54 simpr ySx+˙ySIxSIxS
55 54 ralimi xSySx+˙ySIxSxSIxS
56 27 55 syl GGrpSBSxSySx+˙ySIxSxSIxS
57 fveq2 x=uIx=Iu
58 57 eleq1d x=uIxSIuS
59 58 rspccva xSIxSuSIuS
60 56 59 sylan GGrpSBSxSySx+˙ySIxSuSIuS
61 simpr GGrpSBSxSySx+˙ySIxSuSuS
62 30 adantr GGrpSBSxSySx+˙ySIxSuSxSySx+˙yS
63 ovrspc2v IuSuSxSySx+˙ySIu+˙uS
64 60 61 62 63 syl21anc GGrpSBSxSySx+˙ySIxSuSIu+˙uS
65 53 64 eqeltrrd GGrpSBSxSySx+˙ySIxSuS0GS
66 48 65 exlimddv GGrpSBSxSySx+˙ySIxS0GS
67 1 2 50 grplid GGrpuB0G+˙u=u
68 67 adantlr GGrpSBSxSySx+˙ySIxSuB0G+˙u=u
69 49 68 syldan GGrpSBSxSySx+˙ySIxSuS0G+˙u=u
70 22 26 37 45 66 69 60 53 isgrpd GGrpSBSxSySx+˙ySIxSG𝑠SGrp
71 1 issubg SSubGrpGGGrpSBG𝑠SGrp
72 19 20 70 71 syl3anbrc GGrpSBSxSySx+˙ySIxSSSubGrpG
73 72 ex GGrpSBSxSySx+˙ySIxSSSubGrpG
74 18 73 impbid2 GGrpSSubGrpGSBSxSySx+˙ySIxS