Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
itgmulc2
Next ⟩
itgabs
Metamath Proof Explorer
Ascii
Unicode
Theorem
itgmulc2
Description:
Multiply an integral by a constant.
(Contributed by
Mario Carneiro
, 25-Aug-2014)
Ref
Expression
Hypotheses
itgmulc2.1
⊢
φ
→
C
∈
ℂ
itgmulc2.2
⊢
φ
∧
x
∈
A
→
B
∈
V
itgmulc2.3
⊢
φ
→
x
∈
A
⟼
B
∈
𝐿
1
Assertion
itgmulc2
⊢
φ
→
C
∫
A
B
d
x
=
∫
A
C
B
d
x
Proof
Step
Hyp
Ref
Expression
1
itgmulc2.1
⊢
φ
→
C
∈
ℂ
2
itgmulc2.2
⊢
φ
∧
x
∈
A
→
B
∈
V
3
itgmulc2.3
⊢
φ
→
x
∈
A
⟼
B
∈
𝐿
1
4
1
recld
⊢
φ
→
ℜ
C
∈
ℝ
5
4
recnd
⊢
φ
→
ℜ
C
∈
ℂ
6
5
adantr
⊢
φ
∧
x
∈
A
→
ℜ
C
∈
ℂ
7
iblmbf
⊢
x
∈
A
⟼
B
∈
𝐿
1
→
x
∈
A
⟼
B
∈
MblFn
8
3
7
syl
⊢
φ
→
x
∈
A
⟼
B
∈
MblFn
9
8
2
mbfmptcl
⊢
φ
∧
x
∈
A
→
B
∈
ℂ
10
9
recld
⊢
φ
∧
x
∈
A
→
ℜ
B
∈
ℝ
11
10
recnd
⊢
φ
∧
x
∈
A
→
ℜ
B
∈
ℂ
12
6
11
mulcld
⊢
φ
∧
x
∈
A
→
ℜ
C
ℜ
B
∈
ℂ
13
9
iblcn
⊢
φ
→
x
∈
A
⟼
B
∈
𝐿
1
↔
x
∈
A
⟼
ℜ
B
∈
𝐿
1
∧
x
∈
A
⟼
ℑ
B
∈
𝐿
1
14
3
13
mpbid
⊢
φ
→
x
∈
A
⟼
ℜ
B
∈
𝐿
1
∧
x
∈
A
⟼
ℑ
B
∈
𝐿
1
15
14
simpld
⊢
φ
→
x
∈
A
⟼
ℜ
B
∈
𝐿
1
16
5
10
15
iblmulc2
⊢
φ
→
x
∈
A
⟼
ℜ
C
ℜ
B
∈
𝐿
1
17
12
16
itgcl
⊢
φ
→
∫
A
ℜ
C
ℜ
B
d
x
∈
ℂ
18
ax-icn
⊢
i
∈
ℂ
19
9
imcld
⊢
φ
∧
x
∈
A
→
ℑ
B
∈
ℝ
20
19
recnd
⊢
φ
∧
x
∈
A
→
ℑ
B
∈
ℂ
21
6
20
mulcld
⊢
φ
∧
x
∈
A
→
ℜ
C
ℑ
B
∈
ℂ
22
14
simprd
⊢
φ
→
x
∈
A
⟼
ℑ
B
∈
𝐿
1
23
5
19
22
iblmulc2
⊢
φ
→
x
∈
A
⟼
ℜ
C
ℑ
B
∈
𝐿
1
24
21
23
itgcl
⊢
φ
→
∫
A
ℜ
C
ℑ
B
d
x
∈
ℂ
25
mulcl
⊢
i
∈
ℂ
∧
∫
A
ℜ
C
ℑ
B
d
x
∈
ℂ
→
i
∫
A
ℜ
C
ℑ
B
d
x
∈
ℂ
26
18
24
25
sylancr
⊢
φ
→
i
∫
A
ℜ
C
ℑ
B
d
x
∈
ℂ
27
1
imcld
⊢
φ
→
ℑ
C
∈
ℝ
28
27
renegcld
⊢
φ
→
−
ℑ
C
∈
ℝ
29
28
recnd
⊢
φ
→
−
ℑ
C
∈
ℂ
30
29
adantr
⊢
φ
∧
x
∈
A
→
−
ℑ
C
∈
ℂ
31
30
20
mulcld
⊢
φ
∧
x
∈
A
→
−
ℑ
C
ℑ
B
∈
ℂ
32
29
19
22
iblmulc2
⊢
φ
→
x
∈
A
⟼
−
ℑ
C
ℑ
B
∈
𝐿
1
33
31
32
itgcl
⊢
φ
→
∫
A
−
ℑ
C
ℑ
B
d
x
∈
ℂ
34
27
recnd
⊢
φ
→
ℑ
C
∈
ℂ
35
34
adantr
⊢
φ
∧
x
∈
A
→
ℑ
C
∈
ℂ
36
35
11
mulcld
⊢
φ
∧
x
∈
A
→
ℑ
C
ℜ
B
∈
ℂ
37
34
10
15
iblmulc2
⊢
φ
→
x
∈
A
⟼
ℑ
C
ℜ
B
∈
𝐿
1
38
36
37
itgcl
⊢
φ
→
∫
A
ℑ
C
ℜ
B
d
x
∈
ℂ
39
mulcl
⊢
i
∈
ℂ
∧
∫
A
ℑ
C
ℜ
B
d
x
∈
ℂ
→
i
∫
A
ℑ
C
ℜ
B
d
x
∈
ℂ
40
18
38
39
sylancr
⊢
φ
→
i
∫
A
ℑ
C
ℜ
B
d
x
∈
ℂ
41
17
26
33
40
add4d
⊢
φ
→
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
42
2
3
itgcl
⊢
φ
→
∫
A
B
d
x
∈
ℂ
43
mulcl
⊢
i
∈
ℂ
∧
ℑ
C
∈
ℂ
→
i
ℑ
C
∈
ℂ
44
18
34
43
sylancr
⊢
φ
→
i
ℑ
C
∈
ℂ
45
2
3
itgcnval
⊢
φ
→
∫
A
B
d
x
=
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
46
45
oveq2d
⊢
φ
→
ℜ
C
∫
A
B
d
x
=
ℜ
C
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
47
10
15
itgcl
⊢
φ
→
∫
A
ℜ
B
d
x
∈
ℂ
48
19
22
itgcl
⊢
φ
→
∫
A
ℑ
B
d
x
∈
ℂ
49
mulcl
⊢
i
∈
ℂ
∧
∫
A
ℑ
B
d
x
∈
ℂ
→
i
∫
A
ℑ
B
d
x
∈
ℂ
50
18
48
49
sylancr
⊢
φ
→
i
∫
A
ℑ
B
d
x
∈
ℂ
51
5
47
50
adddid
⊢
φ
→
ℜ
C
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
=
ℜ
C
∫
A
ℜ
B
d
x
+
ℜ
C
i
∫
A
ℑ
B
d
x
52
5
10
15
4
10
itgmulc2lem2
⊢
φ
→
ℜ
C
∫
A
ℜ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
53
18
a1i
⊢
φ
→
i
∈
ℂ
54
5
53
48
mul12d
⊢
φ
→
ℜ
C
i
∫
A
ℑ
B
d
x
=
i
ℜ
C
∫
A
ℑ
B
d
x
55
5
19
22
4
19
itgmulc2lem2
⊢
φ
→
ℜ
C
∫
A
ℑ
B
d
x
=
∫
A
ℜ
C
ℑ
B
d
x
56
55
oveq2d
⊢
φ
→
i
ℜ
C
∫
A
ℑ
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
57
54
56
eqtrd
⊢
φ
→
ℜ
C
i
∫
A
ℑ
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
58
52
57
oveq12d
⊢
φ
→
ℜ
C
∫
A
ℜ
B
d
x
+
ℜ
C
i
∫
A
ℑ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
59
46
51
58
3eqtrd
⊢
φ
→
ℜ
C
∫
A
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
60
45
oveq2d
⊢
φ
→
i
ℑ
C
∫
A
B
d
x
=
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
61
44
47
50
adddid
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
=
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
ℑ
C
i
∫
A
ℑ
B
d
x
62
53
34
47
mulassd
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
=
i
ℑ
C
∫
A
ℜ
B
d
x
63
34
10
15
27
10
itgmulc2lem2
⊢
φ
→
ℑ
C
∫
A
ℜ
B
d
x
=
∫
A
ℑ
C
ℜ
B
d
x
64
63
oveq2d
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
=
i
∫
A
ℑ
C
ℜ
B
d
x
65
62
64
eqtrd
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
=
i
∫
A
ℑ
C
ℜ
B
d
x
66
53
34
53
48
mul4d
⊢
φ
→
i
ℑ
C
i
∫
A
ℑ
B
d
x
=
i
i
ℑ
C
∫
A
ℑ
B
d
x
67
ixi
⊢
i
i
=
−
1
68
67
oveq1i
⊢
i
i
ℑ
C
∫
A
ℑ
B
d
x
=
-1
ℑ
C
∫
A
ℑ
B
d
x
69
34
48
mulcld
⊢
φ
→
ℑ
C
∫
A
ℑ
B
d
x
∈
ℂ
70
69
mulm1d
⊢
φ
→
-1
ℑ
C
∫
A
ℑ
B
d
x
=
−
ℑ
C
∫
A
ℑ
B
d
x
71
68
70
eqtrid
⊢
φ
→
i
i
ℑ
C
∫
A
ℑ
B
d
x
=
−
ℑ
C
∫
A
ℑ
B
d
x
72
34
48
mulneg1d
⊢
φ
→
−
ℑ
C
∫
A
ℑ
B
d
x
=
−
ℑ
C
∫
A
ℑ
B
d
x
73
29
19
22
28
19
itgmulc2lem2
⊢
φ
→
−
ℑ
C
∫
A
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
74
72
73
eqtr3d
⊢
φ
→
−
ℑ
C
∫
A
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
75
66
71
74
3eqtrd
⊢
φ
→
i
ℑ
C
i
∫
A
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
76
65
75
oveq12d
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
ℑ
C
i
∫
A
ℑ
B
d
x
=
i
∫
A
ℑ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
77
40
33
76
comraddd
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
ℑ
C
i
∫
A
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
78
60
61
77
3eqtrd
⊢
φ
→
i
ℑ
C
∫
A
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
79
59
78
oveq12d
⊢
φ
→
ℜ
C
∫
A
B
d
x
+
i
ℑ
C
∫
A
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
80
5
42
44
79
joinlmuladdmuld
⊢
φ
→
ℜ
C
+
i
ℑ
C
∫
A
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
81
35
20
mulcld
⊢
φ
∧
x
∈
A
→
ℑ
C
ℑ
B
∈
ℂ
82
12
81
negsubd
⊢
φ
∧
x
∈
A
→
ℜ
C
ℜ
B
+
−
ℑ
C
ℑ
B
=
ℜ
C
ℜ
B
−
ℑ
C
ℑ
B
83
35
20
mulneg1d
⊢
φ
∧
x
∈
A
→
−
ℑ
C
ℑ
B
=
−
ℑ
C
ℑ
B
84
83
oveq2d
⊢
φ
∧
x
∈
A
→
ℜ
C
ℜ
B
+
−
ℑ
C
ℑ
B
=
ℜ
C
ℜ
B
+
−
ℑ
C
ℑ
B
85
1
adantr
⊢
φ
∧
x
∈
A
→
C
∈
ℂ
86
85
9
remuld
⊢
φ
∧
x
∈
A
→
ℜ
C
B
=
ℜ
C
ℜ
B
−
ℑ
C
ℑ
B
87
82
84
86
3eqtr4d
⊢
φ
∧
x
∈
A
→
ℜ
C
ℜ
B
+
−
ℑ
C
ℑ
B
=
ℜ
C
B
88
87
itgeq2dv
⊢
φ
→
∫
A
ℜ
C
ℜ
B
+
−
ℑ
C
ℑ
B
d
x
=
∫
A
ℜ
C
B
d
x
89
12
16
31
32
itgadd
⊢
φ
→
∫
A
ℜ
C
ℜ
B
+
−
ℑ
C
ℑ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
90
88
89
eqtr3d
⊢
φ
→
∫
A
ℜ
C
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
91
85
9
immuld
⊢
φ
∧
x
∈
A
→
ℑ
C
B
=
ℜ
C
ℑ
B
+
ℑ
C
ℜ
B
92
91
itgeq2dv
⊢
φ
→
∫
A
ℑ
C
B
d
x
=
∫
A
ℜ
C
ℑ
B
+
ℑ
C
ℜ
B
d
x
93
21
23
36
37
itgadd
⊢
φ
→
∫
A
ℜ
C
ℑ
B
+
ℑ
C
ℜ
B
d
x
=
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
ℑ
C
ℜ
B
d
x
94
92
93
eqtrd
⊢
φ
→
∫
A
ℑ
C
B
d
x
=
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
ℑ
C
ℜ
B
d
x
95
94
oveq2d
⊢
φ
→
i
∫
A
ℑ
C
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
ℑ
C
ℜ
B
d
x
96
53
24
38
adddid
⊢
φ
→
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
ℑ
C
ℜ
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
97
95
96
eqtrd
⊢
φ
→
i
∫
A
ℑ
C
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
98
90
97
oveq12d
⊢
φ
→
∫
A
ℜ
C
B
d
x
+
i
∫
A
ℑ
C
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
99
41
80
98
3eqtr4d
⊢
φ
→
ℜ
C
+
i
ℑ
C
∫
A
B
d
x
=
∫
A
ℜ
C
B
d
x
+
i
∫
A
ℑ
C
B
d
x
100
1
replimd
⊢
φ
→
C
=
ℜ
C
+
i
ℑ
C
101
100
oveq1d
⊢
φ
→
C
∫
A
B
d
x
=
ℜ
C
+
i
ℑ
C
∫
A
B
d
x
102
85
9
mulcld
⊢
φ
∧
x
∈
A
→
C
B
∈
ℂ
103
1
2
3
iblmulc2
⊢
φ
→
x
∈
A
⟼
C
B
∈
𝐿
1
104
102
103
itgcnval
⊢
φ
→
∫
A
C
B
d
x
=
∫
A
ℜ
C
B
d
x
+
i
∫
A
ℑ
C
B
d
x
105
99
101
104
3eqtr4d
⊢
φ
→
C
∫
A
B
d
x
=
∫
A
C
B
d
x