Metamath Proof Explorer


Theorem itgmulc2

Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgmulc2.1 φC
itgmulc2.2 φxABV
itgmulc2.3 φxAB𝐿1
Assertion itgmulc2 φCABdx=ACBdx

Proof

Step Hyp Ref Expression
1 itgmulc2.1 φC
2 itgmulc2.2 φxABV
3 itgmulc2.3 φxAB𝐿1
4 1 recld φC
5 4 recnd φC
6 5 adantr φxAC
7 iblmbf xAB𝐿1xABMblFn
8 3 7 syl φxABMblFn
9 8 2 mbfmptcl φxAB
10 9 recld φxAB
11 10 recnd φxAB
12 6 11 mulcld φxACB
13 9 iblcn φxAB𝐿1xAB𝐿1xAB𝐿1
14 3 13 mpbid φxAB𝐿1xAB𝐿1
15 14 simpld φxAB𝐿1
16 5 10 15 iblmulc2 φxACB𝐿1
17 12 16 itgcl φACBdx
18 ax-icn i
19 9 imcld φxAB
20 19 recnd φxAB
21 6 20 mulcld φxACB
22 14 simprd φxAB𝐿1
23 5 19 22 iblmulc2 φxACB𝐿1
24 21 23 itgcl φACBdx
25 mulcl iACBdxiACBdx
26 18 24 25 sylancr φiACBdx
27 1 imcld φC
28 27 renegcld φC
29 28 recnd φC
30 29 adantr φxAC
31 30 20 mulcld φxACB
32 29 19 22 iblmulc2 φxACB𝐿1
33 31 32 itgcl φACBdx
34 27 recnd φC
35 34 adantr φxAC
36 35 11 mulcld φxACB
37 34 10 15 iblmulc2 φxACB𝐿1
38 36 37 itgcl φACBdx
39 mulcl iACBdxiACBdx
40 18 38 39 sylancr φiACBdx
41 17 26 33 40 add4d φACBdx+iACBdx+ACBdx+iACBdx=ACBdx+ACBdx+iACBdx+iACBdx
42 2 3 itgcl φABdx
43 mulcl iCiC
44 18 34 43 sylancr φiC
45 2 3 itgcnval φABdx=ABdx+iABdx
46 45 oveq2d φCABdx=CABdx+iABdx
47 10 15 itgcl φABdx
48 19 22 itgcl φABdx
49 mulcl iABdxiABdx
50 18 48 49 sylancr φiABdx
51 5 47 50 adddid φCABdx+iABdx=CABdx+CiABdx
52 5 10 15 4 10 itgmulc2lem2 φCABdx=ACBdx
53 18 a1i φi
54 5 53 48 mul12d φCiABdx=iCABdx
55 5 19 22 4 19 itgmulc2lem2 φCABdx=ACBdx
56 55 oveq2d φiCABdx=iACBdx
57 54 56 eqtrd φCiABdx=iACBdx
58 52 57 oveq12d φCABdx+CiABdx=ACBdx+iACBdx
59 46 51 58 3eqtrd φCABdx=ACBdx+iACBdx
60 45 oveq2d φiCABdx=iCABdx+iABdx
61 44 47 50 adddid φiCABdx+iABdx=iCABdx+iCiABdx
62 53 34 47 mulassd φiCABdx=iCABdx
63 34 10 15 27 10 itgmulc2lem2 φCABdx=ACBdx
64 63 oveq2d φiCABdx=iACBdx
65 62 64 eqtrd φiCABdx=iACBdx
66 53 34 53 48 mul4d φiCiABdx=iiCABdx
67 ixi ii=1
68 67 oveq1i iiCABdx=-1CABdx
69 34 48 mulcld φCABdx
70 69 mulm1d φ-1CABdx=CABdx
71 68 70 eqtrid φiiCABdx=CABdx
72 34 48 mulneg1d φCABdx=CABdx
73 29 19 22 28 19 itgmulc2lem2 φCABdx=ACBdx
74 72 73 eqtr3d φCABdx=ACBdx
75 66 71 74 3eqtrd φiCiABdx=ACBdx
76 65 75 oveq12d φiCABdx+iCiABdx=iACBdx+ACBdx
77 40 33 76 comraddd φiCABdx+iCiABdx=ACBdx+iACBdx
78 60 61 77 3eqtrd φiCABdx=ACBdx+iACBdx
79 59 78 oveq12d φCABdx+iCABdx=ACBdx+iACBdx+ACBdx+iACBdx
80 5 42 44 79 joinlmuladdmuld φC+iCABdx=ACBdx+iACBdx+ACBdx+iACBdx
81 35 20 mulcld φxACB
82 12 81 negsubd φxACB+CB=CBCB
83 35 20 mulneg1d φxACB=CB
84 83 oveq2d φxACB+CB=CB+CB
85 1 adantr φxAC
86 85 9 remuld φxACB=CBCB
87 82 84 86 3eqtr4d φxACB+CB=CB
88 87 itgeq2dv φACB+CBdx=ACBdx
89 12 16 31 32 itgadd φACB+CBdx=ACBdx+ACBdx
90 88 89 eqtr3d φACBdx=ACBdx+ACBdx
91 85 9 immuld φxACB=CB+CB
92 91 itgeq2dv φACBdx=ACB+CBdx
93 21 23 36 37 itgadd φACB+CBdx=ACBdx+ACBdx
94 92 93 eqtrd φACBdx=ACBdx+ACBdx
95 94 oveq2d φiACBdx=iACBdx+ACBdx
96 53 24 38 adddid φiACBdx+ACBdx=iACBdx+iACBdx
97 95 96 eqtrd φiACBdx=iACBdx+iACBdx
98 90 97 oveq12d φACBdx+iACBdx=ACBdx+ACBdx+iACBdx+iACBdx
99 41 80 98 3eqtr4d φC+iCABdx=ACBdx+iACBdx
100 1 replimd φC=C+iC
101 100 oveq1d φCABdx=C+iCABdx
102 85 9 mulcld φxACB
103 1 2 3 iblmulc2 φxACB𝐿1
104 102 103 itgcnval φACBdx=ACBdx+iACBdx
105 99 101 104 3eqtr4d φCABdx=ACBdx