| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgsplit.i |
|
| 2 |
|
itgsplit.u |
|
| 3 |
|
itgsplit.c |
|
| 4 |
|
itgsplit.a |
|
| 5 |
|
itgsplit.b |
|
| 6 |
|
iblmbf |
|
| 7 |
4 6
|
syl |
|
| 8 |
|
ssun1 |
|
| 9 |
8 2
|
sseqtrrid |
|
| 10 |
9
|
sselda |
|
| 11 |
10 3
|
syldan |
|
| 12 |
7 11
|
mbfdm2 |
|
| 13 |
12
|
adantr |
|
| 14 |
|
iblmbf |
|
| 15 |
5 14
|
syl |
|
| 16 |
|
ssun2 |
|
| 17 |
16 2
|
sseqtrrid |
|
| 18 |
17
|
sselda |
|
| 19 |
18 3
|
syldan |
|
| 20 |
15 19
|
mbfdm2 |
|
| 21 |
20
|
adantr |
|
| 22 |
1
|
adantr |
|
| 23 |
2
|
adantr |
|
| 24 |
2
|
eleq2d |
|
| 25 |
|
elun |
|
| 26 |
24 25
|
bitrdi |
|
| 27 |
26
|
biimpa |
|
| 28 |
7 11
|
mbfmptcl |
|
| 29 |
15 19
|
mbfmptcl |
|
| 30 |
28 29
|
jaodan |
|
| 31 |
27 30
|
syldan |
|
| 32 |
31
|
adantlr |
|
| 33 |
|
ax-icn |
|
| 34 |
|
elfznn0 |
|
| 35 |
34
|
adantl |
|
| 36 |
|
expcl |
|
| 37 |
33 35 36
|
sylancr |
|
| 38 |
37
|
adantr |
|
| 39 |
|
ine0 |
|
| 40 |
|
elfzelz |
|
| 41 |
40
|
adantl |
|
| 42 |
|
expne0i |
|
| 43 |
33 39 41 42
|
mp3an12i |
|
| 44 |
43
|
adantr |
|
| 45 |
32 38 44
|
divcld |
|
| 46 |
45
|
recld |
|
| 47 |
|
0re |
|
| 48 |
|
ifcl |
|
| 49 |
46 47 48
|
sylancl |
|
| 50 |
49
|
rexrd |
|
| 51 |
|
max1 |
|
| 52 |
47 46 51
|
sylancr |
|
| 53 |
|
elxrge0 |
|
| 54 |
50 52 53
|
sylanbrc |
|
| 55 |
|
ifan |
|
| 56 |
55
|
mpteq2i |
|
| 57 |
|
ifan |
|
| 58 |
57
|
mpteq2i |
|
| 59 |
|
ifan |
|
| 60 |
59
|
mpteq2i |
|
| 61 |
|
eqidd |
|
| 62 |
|
eqidd |
|
| 63 |
61 62 4 11
|
iblitg |
|
| 64 |
40 63
|
sylan2 |
|
| 65 |
|
eqidd |
|
| 66 |
|
eqidd |
|
| 67 |
65 66 5 19
|
iblitg |
|
| 68 |
40 67
|
sylan2 |
|
| 69 |
13 21 22 23 54 56 58 60 64 68
|
itg2split |
|
| 70 |
69
|
oveq2d |
|
| 71 |
63
|
recnd |
|
| 72 |
40 71
|
sylan2 |
|
| 73 |
68
|
recnd |
|
| 74 |
37 72 73
|
adddid |
|
| 75 |
70 74
|
eqtrd |
|
| 76 |
75
|
sumeq2dv |
|
| 77 |
|
fzfid |
|
| 78 |
37 72
|
mulcld |
|
| 79 |
37 73
|
mulcld |
|
| 80 |
77 78 79
|
fsumadd |
|
| 81 |
76 80
|
eqtrd |
|
| 82 |
|
eqid |
|
| 83 |
82
|
dfitg |
|
| 84 |
82
|
dfitg |
|
| 85 |
82
|
dfitg |
|
| 86 |
84 85
|
oveq12i |
|
| 87 |
81 83 86
|
3eqtr4g |
|