Metamath Proof Explorer


Theorem jm2.27a

Description: Lemma for jm2.27 . Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Hypotheses jm2.27a1 φA2
jm2.27a2 φB
jm2.27a3 φC
jm2.27a4 φD0
jm2.27a5 φE0
jm2.27a6 φF0
jm2.27a7 φG0
jm2.27a8 φH0
jm2.27a9 φI0
jm2.27a10 φJ0
jm2.27a11 φD2A21C2=1
jm2.27a12 φF2A21E2=1
jm2.27a13 φG2
jm2.27a14 φI2G21H2=1
jm2.27a15 φE=J+12C2
jm2.27a16 φFGA
jm2.27a17 φ2CG1
jm2.27a18 φFHC
jm2.27a19 φ2CHB
jm2.27a20 φBC
jm2.27a21 φP
jm2.27a22 φD=AXrmP
jm2.27a23 φC=AYrmP
jm2.27a24 φQ
jm2.27a25 φF=AXrmQ
jm2.27a26 φE=AYrmQ
jm2.27a27 φR
jm2.27a28 φI=GXrmR
jm2.27a29 φH=GYrmR
Assertion jm2.27a φC=AYrmB

Proof

Step Hyp Ref Expression
1 jm2.27a1 φA2
2 jm2.27a2 φB
3 jm2.27a3 φC
4 jm2.27a4 φD0
5 jm2.27a5 φE0
6 jm2.27a6 φF0
7 jm2.27a7 φG0
8 jm2.27a8 φH0
9 jm2.27a9 φI0
10 jm2.27a10 φJ0
11 jm2.27a11 φD2A21C2=1
12 jm2.27a12 φF2A21E2=1
13 jm2.27a13 φG2
14 jm2.27a14 φI2G21H2=1
15 jm2.27a15 φE=J+12C2
16 jm2.27a16 φFGA
17 jm2.27a17 φ2CG1
18 jm2.27a18 φFHC
19 jm2.27a19 φ2CHB
20 jm2.27a20 φBC
21 jm2.27a21 φP
22 jm2.27a22 φD=AXrmP
23 jm2.27a23 φC=AYrmP
24 jm2.27a24 φQ
25 jm2.27a25 φF=AXrmQ
26 jm2.27a26 φE=AYrmQ
27 jm2.27a27 φR
28 jm2.27a28 φI=GXrmR
29 jm2.27a29 φH=GYrmR
30 2z 2
31 3 nnzd φC
32 zmulcl 2C2C
33 30 31 32 sylancr φ2C
34 2 nnzd φB
35 8 nn0zd φH
36 congsym 2CHB2CHB2CBH
37 33 35 34 19 36 syl22anc φ2CBH
38 7 nn0zd φG
39 peano2zm GG1
40 38 39 syl φG1
41 35 27 zsubcld φHR
42 8 nn0ge0d φ0H
43 rmy0 G2GYrm0=0
44 13 43 syl φGYrm0=0
45 29 eqcomd φGYrmR=H
46 42 44 45 3brtr4d φGYrm0GYrmR
47 0zd φ0
48 lermy G20R0RGYrm0GYrmR
49 13 47 27 48 syl3anc φ0RGYrm0GYrmR
50 46 49 mpbird φ0R
51 elnn0z R0R0R
52 27 50 51 sylanbrc φR0
53 jm2.16nn0 G2R0G1GYrmRR
54 13 52 53 syl2anc φG1GYrmRR
55 29 oveq1d φHR=GYrmRR
56 54 55 breqtrrd φG1HR
57 33 40 41 17 56 dvdstrd φ2CHR
58 congtr 2CBHR2CBH2CHR2CBR
59 33 34 35 27 37 57 58 syl222anc φ2CBR
60 59 orcd φ2CBR2CBR
61 zmulcl 2Q2Q
62 30 24 61 sylancr φ2Q
63 zsqcl CC2
64 31 63 syl φC2
65 dvdsmul2 2C2C22C2
66 30 64 65 sylancr φC22C2
67 10 nn0zd φJ
68 67 peano2zd φJ+1
69 zmulcl 2C22C2
70 30 64 69 sylancr φ2C2
71 dvdsmultr2 C2J+12C2C22C2C2J+12C2
72 64 68 70 71 syl3anc φC22C2C2J+12C2
73 66 72 mpd φC2J+12C2
74 23 oveq1d φC2=AYrmP2
75 15 26 eqtr3d φJ+12C2=AYrmQ
76 73 74 75 3brtr3d φAYrmP2AYrmQ
77 68 zred φJ+1
78 70 zred φ2C2
79 nn0p1nn J0J+1
80 10 79 syl φJ+1
81 80 nngt0d φ0<J+1
82 2nn 2
83 3 nnsqcld φC2
84 nnmulcl 2C22C2
85 82 83 84 sylancr φ2C2
86 85 nngt0d φ0<2C2
87 77 78 81 86 mulgt0d φ0<J+12C2
88 87 15 breqtrrd φ0<E
89 rmy0 A2AYrm0=0
90 1 89 syl φAYrm0=0
91 26 eqcomd φAYrmQ=E
92 88 90 91 3brtr4d φAYrm0<AYrmQ
93 ltrmy A20Q0<QAYrm0<AYrmQ
94 1 47 24 93 syl3anc φ0<QAYrm0<AYrmQ
95 92 94 mpbird φ0<Q
96 elnnz QQ0<Q
97 24 95 96 sylanbrc φQ
98 3 nngt0d φ0<C
99 23 eqcomd φAYrmP=C
100 98 90 99 3brtr4d φAYrm0<AYrmP
101 ltrmy A20P0<PAYrm0<AYrmP
102 1 47 21 101 syl3anc φ0<PAYrm0<AYrmP
103 100 102 mpbird φ0<P
104 elnnz PP0<P
105 21 103 104 sylanbrc φP
106 jm2.20nn A2QPAYrmP2AYrmQPAYrmPQ
107 1 97 105 106 syl3anc φAYrmP2AYrmQPAYrmPQ
108 76 107 mpbid φPAYrmPQ
109 23 31 eqeltrrd φAYrmP
110 muldvds2 PAYrmPQPAYrmPQAYrmPQ
111 21 109 24 110 syl3anc φPAYrmPQAYrmPQ
112 108 111 mpd φAYrmPQ
113 23 112 eqbrtrd φCQ
114 30 a1i φ2
115 dvdscmul CQ2CQ2C2Q
116 31 24 114 115 syl3anc φCQ2C2Q
117 113 116 mpd φ2C2Q
118 6 nn0zd φF
119 25 118 eqeltrrd φAXrmQ
120 frmy Yrm:2×
121 120 fovcl A2RAYrmR
122 1 27 121 syl2anc φAYrmR
123 29 35 eqeltrrd φGYrmR
124 eluzelz A2A
125 1 124 syl φA
126 125 38 zsubcld φAG
127 122 123 zsubcld φAYrmRGYrmR
128 congsym FGAFGAFAG
129 118 38 125 16 128 syl22anc φFAG
130 25 129 eqbrtrrd φAXrmQAG
131 jm2.15nn0 A2G2R0AGAYrmRGYrmR
132 1 13 52 131 syl3anc φAGAYrmRGYrmR
133 119 126 127 130 132 dvdstrd φAXrmQAYrmRGYrmR
134 29 23 oveq12d φHC=GYrmRAYrmP
135 18 25 134 3brtr3d φAXrmQGYrmRAYrmP
136 congtr AXrmQAYrmRGYrmRAYrmPAXrmQAYrmRGYrmRAXrmQGYrmRAYrmPAXrmQAYrmRAYrmP
137 119 122 123 109 133 135 136 syl222anc φAXrmQAYrmRAYrmP
138 137 orcd φAXrmQAYrmRAYrmPAXrmQAYrmRAYrmP
139 jm2.26 A2QRPAXrmQAYrmRAYrmPAXrmQAYrmRAYrmP2QRP2QRP
140 1 97 27 21 139 syl22anc φAXrmQAYrmRAYrmPAXrmQAYrmRAYrmP2QRP2QRP
141 138 140 mpbid φ2QRP2QRP
142 dvdsacongtr 2QRP2C2C2Q2QRP2QRP2CRP2CRP
143 62 27 21 33 117 141 142 syl222anc φ2CRP2CRP
144 acongtr 2CBRP2CBR2CBR2CRP2CRP2CBP2CBP
145 33 34 27 21 60 143 144 syl222anc φ2CBP2CBP
146 2 nnnn0d φB0
147 3 nnnn0d φC0
148 elfz2nn0 B0CB0C0BC
149 146 147 20 148 syl3anbrc φB0C
150 105 nnnn0d φP0
151 rmygeid A2P0PAYrmP
152 1 150 151 syl2anc φPAYrmP
153 152 23 breqtrrd φPC
154 elfz2nn0 P0CP0C0PC
155 150 147 153 154 syl3anbrc φP0C
156 acongeq CB0CP0CB=P2CBP2CBP
157 3 149 155 156 syl3anc φB=P2CBP2CBP
158 145 157 mpbird φB=P
159 158 oveq2d φAYrmB=AYrmP
160 23 159 eqtr4d φC=AYrmB