Metamath Proof Explorer


Theorem kqnrmlem1

Description: A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion kqnrmlem1 JTopOnXJNrmKQJNrm

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 1 kqtopon JTopOnXKQJTopOnranF
3 2 adantr JTopOnXJNrmKQJTopOnranF
4 topontop KQJTopOnranFKQJTop
5 3 4 syl JTopOnXJNrmKQJTop
6 simplr JTopOnXJNrmzKQJwClsdKQJ𝒫zJNrm
7 1 kqid JTopOnXFJCnKQJ
8 7 ad2antrr JTopOnXJNrmzKQJwClsdKQJ𝒫zFJCnKQJ
9 simprl JTopOnXJNrmzKQJwClsdKQJ𝒫zzKQJ
10 cnima FJCnKQJzKQJF-1zJ
11 8 9 10 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zF-1zJ
12 simprr JTopOnXJNrmzKQJwClsdKQJ𝒫zwClsdKQJ𝒫z
13 12 elin1d JTopOnXJNrmzKQJwClsdKQJ𝒫zwClsdKQJ
14 cnclima FJCnKQJwClsdKQJF-1wClsdJ
15 8 13 14 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zF-1wClsdJ
16 12 elin2d JTopOnXJNrmzKQJwClsdKQJ𝒫zw𝒫z
17 elpwi w𝒫zwz
18 imass2 wzF-1wF-1z
19 16 17 18 3syl JTopOnXJNrmzKQJwClsdKQJ𝒫zF-1wF-1z
20 nrmsep3 JNrmF-1zJF-1wClsdJF-1wF-1zuJF-1wuclsJuF-1z
21 6 11 15 19 20 syl13anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1z
22 simplll JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zJTopOnX
23 simprl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zuJ
24 1 kqopn JTopOnXuJFuKQJ
25 22 23 24 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zFuKQJ
26 simprrl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zF-1wu
27 1 kqffn JTopOnXFFnX
28 fnfun FFnXFunF
29 22 27 28 3syl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zFunF
30 13 adantr JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zwClsdKQJ
31 eqid KQJ=KQJ
32 31 cldss wClsdKQJwKQJ
33 30 32 syl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zwKQJ
34 toponuni KQJTopOnranFranF=KQJ
35 22 2 34 3syl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zranF=KQJ
36 33 35 sseqtrrd JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zwranF
37 funimass1 FunFwranFF-1wuwFu
38 29 36 37 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zF-1wuwFu
39 26 38 mpd JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zwFu
40 topontop JTopOnXJTop
41 22 40 syl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zJTop
42 elssuni uJuJ
43 42 ad2antrl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zuJ
44 eqid J=J
45 44 clscld JTopuJclsJuClsdJ
46 41 43 45 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zclsJuClsdJ
47 1 kqcld JTopOnXclsJuClsdJFclsJuClsdKQJ
48 22 46 47 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zFclsJuClsdKQJ
49 44 sscls JTopuJuclsJu
50 41 43 49 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zuclsJu
51 imass2 uclsJuFuFclsJu
52 50 51 syl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zFuFclsJu
53 31 clsss2 FclsJuClsdKQJFuFclsJuclsKQJFuFclsJu
54 48 52 53 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zclsKQJFuFclsJu
55 simprrr JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zclsJuF-1z
56 44 clsss3 JTopuJclsJuJ
57 41 43 56 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zclsJuJ
58 fndm FFnXdomF=X
59 22 27 58 3syl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zdomF=X
60 toponuni JTopOnXX=J
61 22 60 syl JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zX=J
62 59 61 eqtrd JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zdomF=J
63 57 62 sseqtrrd JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zclsJudomF
64 funimass3 FunFclsJudomFFclsJuzclsJuF-1z
65 29 63 64 syl2anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zFclsJuzclsJuF-1z
66 55 65 mpbird JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zFclsJuz
67 54 66 sstrd JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zclsKQJFuz
68 sseq2 m=FuwmwFu
69 fveq2 m=FuclsKQJm=clsKQJFu
70 69 sseq1d m=FuclsKQJmzclsKQJFuz
71 68 70 anbi12d m=FuwmclsKQJmzwFuclsKQJFuz
72 71 rspcev FuKQJwFuclsKQJFuzmKQJwmclsKQJmz
73 25 39 67 72 syl12anc JTopOnXJNrmzKQJwClsdKQJ𝒫zuJF-1wuclsJuF-1zmKQJwmclsKQJmz
74 21 73 rexlimddv JTopOnXJNrmzKQJwClsdKQJ𝒫zmKQJwmclsKQJmz
75 74 ralrimivva JTopOnXJNrmzKQJwClsdKQJ𝒫zmKQJwmclsKQJmz
76 isnrm KQJNrmKQJTopzKQJwClsdKQJ𝒫zmKQJwmclsKQJmz
77 5 75 76 sylanbrc JTopOnXJNrmKQJNrm