Description: Lemma for lcfr . (Contributed by NM, 27-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem1.v | |
|
lcfrlem1.s | |
||
lcfrlem1.q | |
||
lcfrlem1.z | |
||
lcfrlem1.i | |
||
lcfrlem1.f | |
||
lcfrlem1.d | |
||
lcfrlem1.t | |
||
lcfrlem1.m | |
||
lcfrlem1.u | |
||
lcfrlem1.e | |
||
lcfrlem1.g | |
||
lcfrlem1.x | |
||
lcfrlem1.n | |
||
lcfrlem1.h | |
||
lcfrlem2.l | |
||
Assertion | lcfrlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem1.v | |
|
2 | lcfrlem1.s | |
|
3 | lcfrlem1.q | |
|
4 | lcfrlem1.z | |
|
5 | lcfrlem1.i | |
|
6 | lcfrlem1.f | |
|
7 | lcfrlem1.d | |
|
8 | lcfrlem1.t | |
|
9 | lcfrlem1.m | |
|
10 | lcfrlem1.u | |
|
11 | lcfrlem1.e | |
|
12 | lcfrlem1.g | |
|
13 | lcfrlem1.x | |
|
14 | lcfrlem1.n | |
|
15 | lcfrlem1.h | |
|
16 | lcfrlem2.l | |
|
17 | eqid | |
|
18 | lveclmod | |
|
19 | 10 18 | syl | |
20 | 2 | lmodring | |
21 | 19 20 | syl | |
22 | 2 | lvecdrng | |
23 | 10 22 | syl | |
24 | 2 17 1 6 | lflcl | |
25 | 10 12 13 24 | syl3anc | |
26 | 17 4 5 | drnginvrcl | |
27 | 23 25 14 26 | syl3anc | |
28 | 2 17 1 6 | lflcl | |
29 | 10 11 13 28 | syl3anc | |
30 | 17 3 | ringcl | |
31 | 21 27 29 30 | syl3anc | |
32 | 2 17 6 16 7 8 10 12 31 | lkrss | |
33 | 6 2 17 7 8 19 31 12 | ldualvscl | |
34 | ringgrp | |
|
35 | 21 34 | syl | |
36 | eqid | |
|
37 | 17 36 | ringidcl | |
38 | 21 37 | syl | |
39 | eqid | |
|
40 | 17 39 | grpinvcl | |
41 | 35 38 40 | syl2anc | |
42 | 2 17 6 16 7 8 10 33 41 | lkrss | |
43 | 32 42 | sstrd | |
44 | sslin | |
|
45 | 43 44 | syl | |
46 | eqid | |
|
47 | 6 2 17 7 8 19 41 33 | ldualvscl | |
48 | 6 16 7 46 19 11 47 | lkrin | |
49 | 45 48 | sstrd | |
50 | 15 | fveq2i | |
51 | 2 39 36 6 7 46 8 9 19 11 33 | ldualvsub | |
52 | 51 | fveq2d | |
53 | 50 52 | eqtr2id | |
54 | 49 53 | sseqtrd | |