Metamath Proof Explorer


Theorem lcfrlem2

Description: Lemma for lcfr . (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lcfrlem1.v V = Base U
lcfrlem1.s S = Scalar U
lcfrlem1.q × ˙ = S
lcfrlem1.z 0 ˙ = 0 S
lcfrlem1.i I = inv r S
lcfrlem1.f F = LFnl U
lcfrlem1.d D = LDual U
lcfrlem1.t · ˙ = D
lcfrlem1.m - ˙ = - D
lcfrlem1.u φ U LVec
lcfrlem1.e φ E F
lcfrlem1.g φ G F
lcfrlem1.x φ X V
lcfrlem1.n φ G X 0 ˙
lcfrlem1.h H = E - ˙ I G X × ˙ E X · ˙ G
lcfrlem2.l L = LKer U
Assertion lcfrlem2 φ L E L G L H

Proof

Step Hyp Ref Expression
1 lcfrlem1.v V = Base U
2 lcfrlem1.s S = Scalar U
3 lcfrlem1.q × ˙ = S
4 lcfrlem1.z 0 ˙ = 0 S
5 lcfrlem1.i I = inv r S
6 lcfrlem1.f F = LFnl U
7 lcfrlem1.d D = LDual U
8 lcfrlem1.t · ˙ = D
9 lcfrlem1.m - ˙ = - D
10 lcfrlem1.u φ U LVec
11 lcfrlem1.e φ E F
12 lcfrlem1.g φ G F
13 lcfrlem1.x φ X V
14 lcfrlem1.n φ G X 0 ˙
15 lcfrlem1.h H = E - ˙ I G X × ˙ E X · ˙ G
16 lcfrlem2.l L = LKer U
17 eqid Base S = Base S
18 lveclmod U LVec U LMod
19 10 18 syl φ U LMod
20 2 lmodring U LMod S Ring
21 19 20 syl φ S Ring
22 2 lvecdrng U LVec S DivRing
23 10 22 syl φ S DivRing
24 2 17 1 6 lflcl U LVec G F X V G X Base S
25 10 12 13 24 syl3anc φ G X Base S
26 17 4 5 drnginvrcl S DivRing G X Base S G X 0 ˙ I G X Base S
27 23 25 14 26 syl3anc φ I G X Base S
28 2 17 1 6 lflcl U LVec E F X V E X Base S
29 10 11 13 28 syl3anc φ E X Base S
30 17 3 ringcl S Ring I G X Base S E X Base S I G X × ˙ E X Base S
31 21 27 29 30 syl3anc φ I G X × ˙ E X Base S
32 2 17 6 16 7 8 10 12 31 lkrss φ L G L I G X × ˙ E X · ˙ G
33 6 2 17 7 8 19 31 12 ldualvscl φ I G X × ˙ E X · ˙ G F
34 ringgrp S Ring S Grp
35 21 34 syl φ S Grp
36 eqid 1 S = 1 S
37 17 36 ringidcl S Ring 1 S Base S
38 21 37 syl φ 1 S Base S
39 eqid inv g S = inv g S
40 17 39 grpinvcl S Grp 1 S Base S inv g S 1 S Base S
41 35 38 40 syl2anc φ inv g S 1 S Base S
42 2 17 6 16 7 8 10 33 41 lkrss φ L I G X × ˙ E X · ˙ G L inv g S 1 S · ˙ I G X × ˙ E X · ˙ G
43 32 42 sstrd φ L G L inv g S 1 S · ˙ I G X × ˙ E X · ˙ G
44 sslin L G L inv g S 1 S · ˙ I G X × ˙ E X · ˙ G L E L G L E L inv g S 1 S · ˙ I G X × ˙ E X · ˙ G
45 43 44 syl φ L E L G L E L inv g S 1 S · ˙ I G X × ˙ E X · ˙ G
46 eqid + D = + D
47 6 2 17 7 8 19 41 33 ldualvscl φ inv g S 1 S · ˙ I G X × ˙ E X · ˙ G F
48 6 16 7 46 19 11 47 lkrin φ L E L inv g S 1 S · ˙ I G X × ˙ E X · ˙ G L E + D inv g S 1 S · ˙ I G X × ˙ E X · ˙ G
49 45 48 sstrd φ L E L G L E + D inv g S 1 S · ˙ I G X × ˙ E X · ˙ G
50 15 fveq2i L H = L E - ˙ I G X × ˙ E X · ˙ G
51 2 39 36 6 7 46 8 9 19 11 33 ldualvsub φ E - ˙ I G X × ˙ E X · ˙ G = E + D inv g S 1 S · ˙ I G X × ˙ E X · ˙ G
52 51 fveq2d φ L E - ˙ I G X × ˙ E X · ˙ G = L E + D inv g S 1 S · ˙ I G X × ˙ E X · ˙ G
53 50 52 eqtr2id φ L E + D inv g S 1 S · ˙ I G X × ˙ E X · ˙ G = L H
54 49 53 sseqtrd φ L E L G L H