Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem1.v |
|
2 |
|
lcfrlem1.s |
|
3 |
|
lcfrlem1.q |
|
4 |
|
lcfrlem1.z |
|
5 |
|
lcfrlem1.i |
|
6 |
|
lcfrlem1.f |
|
7 |
|
lcfrlem1.d |
|
8 |
|
lcfrlem1.t |
|
9 |
|
lcfrlem1.m |
|
10 |
|
lcfrlem1.u |
|
11 |
|
lcfrlem1.e |
|
12 |
|
lcfrlem1.g |
|
13 |
|
lcfrlem1.x |
|
14 |
|
lcfrlem1.n |
|
15 |
|
lcfrlem1.h |
|
16 |
|
lcfrlem2.l |
|
17 |
|
eqid |
|
18 |
|
lveclmod |
|
19 |
10 18
|
syl |
|
20 |
2
|
lmodring |
|
21 |
19 20
|
syl |
|
22 |
2
|
lvecdrng |
|
23 |
10 22
|
syl |
|
24 |
2 17 1 6
|
lflcl |
|
25 |
10 12 13 24
|
syl3anc |
|
26 |
17 4 5
|
drnginvrcl |
|
27 |
23 25 14 26
|
syl3anc |
|
28 |
2 17 1 6
|
lflcl |
|
29 |
10 11 13 28
|
syl3anc |
|
30 |
17 3
|
ringcl |
|
31 |
21 27 29 30
|
syl3anc |
|
32 |
2 17 6 16 7 8 10 12 31
|
lkrss |
|
33 |
6 2 17 7 8 19 31 12
|
ldualvscl |
|
34 |
|
ringgrp |
|
35 |
21 34
|
syl |
|
36 |
|
eqid |
|
37 |
17 36
|
ringidcl |
|
38 |
21 37
|
syl |
|
39 |
|
eqid |
|
40 |
17 39
|
grpinvcl |
|
41 |
35 38 40
|
syl2anc |
|
42 |
2 17 6 16 7 8 10 33 41
|
lkrss |
|
43 |
32 42
|
sstrd |
|
44 |
|
sslin |
|
45 |
43 44
|
syl |
|
46 |
|
eqid |
|
47 |
6 2 17 7 8 19 41 33
|
ldualvscl |
|
48 |
6 16 7 46 19 11 47
|
lkrin |
|
49 |
45 48
|
sstrd |
|
50 |
15
|
fveq2i |
|
51 |
2 39 36 6 7 46 8 9 19 11 33
|
ldualvsub |
|
52 |
51
|
fveq2d |
|
53 |
50 52
|
eqtr2id |
|
54 |
49 53
|
sseqtrd |
|