Metamath Proof Explorer


Theorem lcfrlem2

Description: Lemma for lcfr . (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lcfrlem1.v V=BaseU
lcfrlem1.s S=ScalarU
lcfrlem1.q ×˙=S
lcfrlem1.z 0˙=0S
lcfrlem1.i I=invrS
lcfrlem1.f F=LFnlU
lcfrlem1.d D=LDualU
lcfrlem1.t ·˙=D
lcfrlem1.m -˙=-D
lcfrlem1.u φULVec
lcfrlem1.e φEF
lcfrlem1.g φGF
lcfrlem1.x φXV
lcfrlem1.n φGX0˙
lcfrlem1.h H=E-˙IGX×˙EX·˙G
lcfrlem2.l L=LKerU
Assertion lcfrlem2 φLELGLH

Proof

Step Hyp Ref Expression
1 lcfrlem1.v V=BaseU
2 lcfrlem1.s S=ScalarU
3 lcfrlem1.q ×˙=S
4 lcfrlem1.z 0˙=0S
5 lcfrlem1.i I=invrS
6 lcfrlem1.f F=LFnlU
7 lcfrlem1.d D=LDualU
8 lcfrlem1.t ·˙=D
9 lcfrlem1.m -˙=-D
10 lcfrlem1.u φULVec
11 lcfrlem1.e φEF
12 lcfrlem1.g φGF
13 lcfrlem1.x φXV
14 lcfrlem1.n φGX0˙
15 lcfrlem1.h H=E-˙IGX×˙EX·˙G
16 lcfrlem2.l L=LKerU
17 eqid BaseS=BaseS
18 lveclmod ULVecULMod
19 10 18 syl φULMod
20 2 lmodring ULModSRing
21 19 20 syl φSRing
22 2 lvecdrng ULVecSDivRing
23 10 22 syl φSDivRing
24 2 17 1 6 lflcl ULVecGFXVGXBaseS
25 10 12 13 24 syl3anc φGXBaseS
26 17 4 5 drnginvrcl SDivRingGXBaseSGX0˙IGXBaseS
27 23 25 14 26 syl3anc φIGXBaseS
28 2 17 1 6 lflcl ULVecEFXVEXBaseS
29 10 11 13 28 syl3anc φEXBaseS
30 17 3 ringcl SRingIGXBaseSEXBaseSIGX×˙EXBaseS
31 21 27 29 30 syl3anc φIGX×˙EXBaseS
32 2 17 6 16 7 8 10 12 31 lkrss φLGLIGX×˙EX·˙G
33 6 2 17 7 8 19 31 12 ldualvscl φIGX×˙EX·˙GF
34 ringgrp SRingSGrp
35 21 34 syl φSGrp
36 eqid 1S=1S
37 17 36 ringidcl SRing1SBaseS
38 21 37 syl φ1SBaseS
39 eqid invgS=invgS
40 17 39 grpinvcl SGrp1SBaseSinvgS1SBaseS
41 35 38 40 syl2anc φinvgS1SBaseS
42 2 17 6 16 7 8 10 33 41 lkrss φLIGX×˙EX·˙GLinvgS1S·˙IGX×˙EX·˙G
43 32 42 sstrd φLGLinvgS1S·˙IGX×˙EX·˙G
44 sslin LGLinvgS1S·˙IGX×˙EX·˙GLELGLELinvgS1S·˙IGX×˙EX·˙G
45 43 44 syl φLELGLELinvgS1S·˙IGX×˙EX·˙G
46 eqid +D=+D
47 6 2 17 7 8 19 41 33 ldualvscl φinvgS1S·˙IGX×˙EX·˙GF
48 6 16 7 46 19 11 47 lkrin φLELinvgS1S·˙IGX×˙EX·˙GLE+DinvgS1S·˙IGX×˙EX·˙G
49 45 48 sstrd φLELGLE+DinvgS1S·˙IGX×˙EX·˙G
50 15 fveq2i LH=LE-˙IGX×˙EX·˙G
51 2 39 36 6 7 46 8 9 19 11 33 ldualvsub φE-˙IGX×˙EX·˙G=E+DinvgS1S·˙IGX×˙EX·˙G
52 51 fveq2d φLE-˙IGX×˙EX·˙G=LE+DinvgS1S·˙IGX×˙EX·˙G
53 50 52 eqtr2id φLE+DinvgS1S·˙IGX×˙EX·˙G=LH
54 49 53 sseqtrd φLELGLH