Metamath Proof Explorer


Theorem lclkrlem1

Description: The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypotheses lclkrlem1.h H = LHyp K
lclkrlem1.o ˙ = ocH K W
lclkrlem1.u U = DVecH K W
lclkrlem1.f F = LFnl U
lclkrlem1.l L = LKer U
lclkrlem1.d D = LDual U
lclkrlem1.r R = Scalar U
lclkrlem1.b B = Base R
lclkrlem1.t · ˙ = D
lclkrlem1.c C = f F | ˙ ˙ L f = L f
lclkrlem1.k φ K HL W H
lclkrlem1.x φ X B
lclkrlem1.g φ G C
Assertion lclkrlem1 φ X · ˙ G C

Proof

Step Hyp Ref Expression
1 lclkrlem1.h H = LHyp K
2 lclkrlem1.o ˙ = ocH K W
3 lclkrlem1.u U = DVecH K W
4 lclkrlem1.f F = LFnl U
5 lclkrlem1.l L = LKer U
6 lclkrlem1.d D = LDual U
7 lclkrlem1.r R = Scalar U
8 lclkrlem1.b B = Base R
9 lclkrlem1.t · ˙ = D
10 lclkrlem1.c C = f F | ˙ ˙ L f = L f
11 lclkrlem1.k φ K HL W H
12 lclkrlem1.x φ X B
13 lclkrlem1.g φ G C
14 1 3 11 dvhlmod φ U LMod
15 10 lcfl1lem G C G F ˙ ˙ L G = L G
16 13 15 sylib φ G F ˙ ˙ L G = L G
17 16 simpld φ G F
18 4 7 8 6 9 14 12 17 ldualvscl φ X · ˙ G F
19 eqid Base U = Base U
20 1 3 2 19 11 dochoc1 φ ˙ ˙ Base U = Base U
21 20 adantr φ X = 0 R ˙ ˙ Base U = Base U
22 fvoveq1 X = 0 R L X · ˙ G = L 0 R · ˙ G
23 6 14 lduallmod φ D LMod
24 eqid Base D = Base D
25 4 6 24 14 17 ldualelvbase φ G Base D
26 eqid Scalar D = Scalar D
27 eqid 0 Scalar D = 0 Scalar D
28 eqid 0 D = 0 D
29 24 26 9 27 28 lmod0vs D LMod G Base D 0 Scalar D · ˙ G = 0 D
30 23 25 29 syl2anc φ 0 Scalar D · ˙ G = 0 D
31 eqid 0 R = 0 R
32 7 31 6 26 27 14 ldual0 φ 0 Scalar D = 0 R
33 32 oveq1d φ 0 Scalar D · ˙ G = 0 R · ˙ G
34 19 7 31 6 28 14 ldual0v φ 0 D = Base U × 0 R
35 30 33 34 3eqtr3d φ 0 R · ˙ G = Base U × 0 R
36 35 fveq2d φ L 0 R · ˙ G = L Base U × 0 R
37 eqid Base U × 0 R = Base U × 0 R
38 7 31 19 4 lfl0f U LMod Base U × 0 R F
39 7 31 19 4 5 lkr0f U LMod Base U × 0 R F L Base U × 0 R = Base U Base U × 0 R = Base U × 0 R
40 14 38 39 syl2anc2 φ L Base U × 0 R = Base U Base U × 0 R = Base U × 0 R
41 37 40 mpbiri φ L Base U × 0 R = Base U
42 36 41 eqtrd φ L 0 R · ˙ G = Base U
43 22 42 sylan9eqr φ X = 0 R L X · ˙ G = Base U
44 43 fveq2d φ X = 0 R ˙ L X · ˙ G = ˙ Base U
45 44 fveq2d φ X = 0 R ˙ ˙ L X · ˙ G = ˙ ˙ Base U
46 21 45 43 3eqtr4d φ X = 0 R ˙ ˙ L X · ˙ G = L X · ˙ G
47 16 simprd φ ˙ ˙ L G = L G
48 47 adantr φ X 0 R ˙ ˙ L G = L G
49 1 3 11 dvhlvec φ U LVec
50 49 adantr φ X 0 R U LVec
51 17 adantr φ X 0 R G F
52 12 adantr φ X 0 R X B
53 simpr φ X 0 R X 0 R
54 7 8 31 4 5 6 9 50 51 52 53 ldualkrsc φ X 0 R L X · ˙ G = L G
55 54 fveq2d φ X 0 R ˙ L X · ˙ G = ˙ L G
56 55 fveq2d φ X 0 R ˙ ˙ L X · ˙ G = ˙ ˙ L G
57 48 56 54 3eqtr4d φ X 0 R ˙ ˙ L X · ˙ G = L X · ˙ G
58 46 57 pm2.61dane φ ˙ ˙ L X · ˙ G = L X · ˙ G
59 10 lcfl1lem X · ˙ G C X · ˙ G F ˙ ˙ L X · ˙ G = L X · ˙ G
60 18 58 59 sylanbrc φ X · ˙ G C