Metamath Proof Explorer


Theorem lcmfunsnlem2

Description: Lemma for lcmfunsn and lcmfunsnlem (Induction step part 2). (Contributed by AV, 26-Aug-2020)

Ref Expression
Assertion lcmfunsnlem2 zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnnlcm_yzn=lcm_yzlcmn

Proof

Step Hyp Ref Expression
1 nfv nzyyFin
2 nfv nkmymklcm_yk
3 nfra1 nnlcm_yn=lcm_ylcmn
4 2 3 nfan nkmymklcm_yknlcm_yn=lcm_ylcmn
5 1 4 nfan nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmn
6 0z 0
7 eqoreldif 0nn=0n0
8 6 7 ax-mp nn=0n0
9 simp2 zyyFiny
10 snssi zz
11 10 3ad2ant1 zyyFinz
12 9 11 unssd zyyFinyz
13 snssi 00
14 6 13 mp1i zyyFin0
15 12 14 unssd zyyFinyz0
16 c0ex 0V
17 16 snid 00
18 17 olci 0yz00
19 elun 0yz00yz00
20 18 19 mpbir 0yz0
21 lcmf0val yz00yz0lcm_yz0=0
22 15 20 21 sylancl zyyFinlcm_yz0=0
23 22 adantr zyyFinn=0lcm_yz0=0
24 sneq n=0n=0
25 24 adantl zyyFinn=0n=0
26 25 uneq2d zyyFinn=0yzn=yz0
27 26 fveq2d zyyFinn=0lcm_yzn=lcm_yz0
28 oveq2 n=0lcm_yzlcmn=lcm_yzlcm0
29 snfi zFin
30 unfi yFinzFinyzFin
31 29 30 mpan2 yFinyzFin
32 31 3ad2ant3 zyyFinyzFin
33 lcmfcl yzyzFinlcm_yz0
34 12 32 33 syl2anc zyyFinlcm_yz0
35 34 nn0zd zyyFinlcm_yz
36 lcm0val lcm_yzlcm_yzlcm0=0
37 35 36 syl zyyFinlcm_yzlcm0=0
38 28 37 sylan9eqr zyyFinn=0lcm_yzlcmn=0
39 23 27 38 3eqtr4d zyyFinn=0lcm_yzn=lcm_yzlcmn
40 39 ex zyyFinn=0lcm_yzn=lcm_yzlcmn
41 40 adantr zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnn=0lcm_yzn=lcm_yzlcmn
42 41 com12 n=0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
43 9 adantl 0yn0zyyFiny
44 11 adantl 0yn0zyyFinz
45 43 44 unssd 0yn0zyyFinyz
46 elun1 0y0yz
47 46 ad2antrr 0yn0zyyFin0yz
48 lcmf0val yz0yzlcm_yz=0
49 45 47 48 syl2anc 0yn0zyyFinlcm_yz=0
50 49 oveq2d 0yn0zyyFinnlcmlcm_yz=nlcm0
51 eldifi n0n
52 lcm0val nnlcm0=0
53 51 52 syl n0nlcm0=0
54 53 ad2antlr 0yn0zyyFinnlcm0=0
55 50 54 eqtrd 0yn0zyyFinnlcmlcm_yz=0
56 simp3 zyyFinyFin
57 56 29 30 sylancl zyyFinyzFin
58 12 57 33 syl2anc zyyFinlcm_yz0
59 58 nn0zd zyyFinlcm_yz
60 51 adantl 0yn0n
61 lcmcom lcm_yznlcm_yzlcmn=nlcmlcm_yz
62 59 60 61 syl2anr 0yn0zyyFinlcm_yzlcmn=nlcmlcm_yz
63 12 adantl 0yn0zyyFinyz
64 51 snssd n0n
65 64 ad2antlr 0yn0zyyFinn
66 63 65 unssd 0yn0zyyFinyzn
67 46 orcd 0y0yz0n
68 elun 0yzn0yz0n
69 67 68 sylibr 0y0yzn
70 69 ad2antrr 0yn0zyyFin0yzn
71 lcmf0val yzn0yznlcm_yzn=0
72 66 70 71 syl2anc 0yn0zyyFinlcm_yzn=0
73 55 62 72 3eqtr4rd 0yn0zyyFinlcm_yzn=lcm_yzlcmn
74 73 a1d 0yn0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
75 74 expimpd 0yn0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
76 75 ex 0yn0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
77 elsng 00z0=z
78 eqcom 0=zz=0
79 77 78 bitrdi 00zz=0
80 6 79 ax-mp 0zz=0
81 80 biimpri z=00z
82 81 ad2antrr z=0n0zyyFin0z
83 82 olcd z=0n0zyyFin0y0z
84 elun 0yz0y0z
85 83 84 sylibr z=0n0zyyFin0yz
86 12 85 48 syl2an2 z=0n0zyyFinlcm_yz=0
87 86 oveq2d z=0n0zyyFinnlcmlcm_yz=nlcm0
88 51 ad2antlr z=0n0zyyFinn
89 88 52 syl z=0n0zyyFinnlcm0=0
90 87 89 eqtrd z=0n0zyyFinnlcmlcm_yz=0
91 59 88 61 syl2an2 z=0n0zyyFinlcm_yzlcmn=nlcmlcm_yz
92 12 adantl z=0n0zyyFinyz
93 64 ad2antlr z=0n0zyyFinn
94 92 93 unssd z=0n0zyyFinyzn
95 sneq z=0z=0
96 17 95 eleqtrrid z=00z
97 96 ad2antrr z=0n0zyyFin0z
98 97 olcd z=0n0zyyFin0y0z
99 98 84 sylibr z=0n0zyyFin0yz
100 99 orcd z=0n0zyyFin0yz0n
101 100 68 sylibr z=0n0zyyFin0yzn
102 94 101 71 syl2anc z=0n0zyyFinlcm_yzn=0
103 90 91 102 3eqtr4rd z=0n0zyyFinlcm_yzn=lcm_yzlcmn
104 103 a1d z=0n0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
105 104 expimpd z=0n0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
106 105 ex z=0n0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
107 ioran ¬0yz=0¬0y¬z=0
108 df-nel 0y¬0y
109 df-ne z0¬z=0
110 108 109 anbi12i 0yz0¬0y¬z=0
111 107 110 bitr4i ¬0yz=00yz0
112 eldif n0n¬n0
113 velsn n0n=0
114 113 bicomi n=0n0
115 114 necon3abii n0¬n0
116 lcmfunsnlem2lem2 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
117 116 exp520 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
118 117 imp 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
119 115 118 biimtrrid 0yz0¬n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
120 119 impcomd 0yz0n¬n0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
121 112 120 biimtrid 0yz0n0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
122 111 121 sylbi ¬0yz=0n0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
123 76 106 122 ecase3 n0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
124 42 123 jaoi n=0n0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
125 8 124 sylbi nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn
126 125 com12 zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnnlcm_yzn=lcm_yzlcmn
127 5 126 ralrimi zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnnlcm_yzn=lcm_yzlcmn