Metamath Proof Explorer


Theorem ldgenpisys

Description: The lambda system E generated by a pi-system T is also a pi-system. (Contributed by Thierry Arnoux, 18-Jun-2020)

Ref Expression
Hypotheses dynkin.p P=s𝒫𝒫O|fiss
dynkin.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
dynkin.o φOV
ldgenpisys.e E=tL|Tt
ldgenpisys.1 φTP
Assertion ldgenpisys φEP

Proof

Step Hyp Ref Expression
1 dynkin.p P=s𝒫𝒫O|fiss
2 dynkin.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
3 dynkin.o φOV
4 ldgenpisys.e E=tL|Tt
5 ldgenpisys.1 φTP
6 ssrab2 s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs𝒫𝒫O
7 ssrab2 s𝒫𝒫O|fiss𝒫𝒫O
8 5 1 eleqtrdi φTs𝒫𝒫O|fiss
9 7 8 sselid φT𝒫𝒫O
10 9 elpwid φT𝒫O
11 2 3 10 ldsysgenld φtL|TtL
12 4 11 eqeltrid φEL
13 12 2 eleqtrdi φEs𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
14 6 13 sselid φE𝒫𝒫O
15 simprr φaEbEbE
16 simprl φaEbEaE
17 3 adantr φaEOV
18 5 adantr φaETP
19 simpr φaEaE
20 10 adantr φaET𝒫O
21 20 sselda φaEbTb𝒫O
22 incom ba=ab
23 3 ad2antrr φaEbTOV
24 5 ad2antrr φaEbTTP
25 simpr φaEbTbT
26 1 2 23 4 24 25 ldgenpisyslem3 φaEbTEc𝒫O|bcE
27 simplr φaEbTaE
28 26 27 sseldd φaEbTac𝒫O|bcE
29 ineq2 c=abc=ba
30 29 eleq1d c=abcEbaE
31 30 elrab ac𝒫O|bcEa𝒫ObaE
32 28 31 sylib φaEbTa𝒫ObaE
33 32 simprd φaEbTbaE
34 22 33 eqeltrrid φaEbTabE
35 21 34 jca φaEbTb𝒫OabE
36 ineq2 c=bac=ab
37 36 eleq1d c=bacEabE
38 37 elrab bc𝒫O|acEb𝒫OabE
39 35 38 sylibr φaEbTbc𝒫O|acE
40 39 ex φaEbTbc𝒫O|acE
41 40 ssrdv φaETc𝒫O|acE
42 1 2 17 4 18 19 41 ldgenpisyslem2 φaEEc𝒫O|acE
43 16 42 syldan φaEbEEc𝒫O|acE
44 ssrab Ec𝒫O|acEE𝒫OcEacE
45 43 44 sylib φaEbEE𝒫OcEacE
46 45 simprd φaEbEcEacE
47 37 rspcv bEcEacEabE
48 15 46 47 sylc φaEbEabE
49 48 ralrimivva φaEbEabE
50 inficl ELaEbEabEfiE=E
51 12 50 syl φaEbEabEfiE=E
52 49 51 mpbid φfiE=E
53 eqimss fiE=EfiEE
54 52 53 syl φfiEE
55 14 54 jca φE𝒫𝒫OfiEE
56 1 ispisys EPE𝒫𝒫OfiEE
57 55 56 sylibr φEP