Metamath Proof Explorer


Theorem ldualvsubval

Description: The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub ? (Requires D to oppR conversion.) (Contributed by NM, 26-Feb-2015)

Ref Expression
Hypotheses ldualvsubval.v V=BaseW
ldualvsubval.r R=ScalarW
ldualvsubval.s S=-R
ldualvsubval.f F=LFnlW
ldualvsubval.d D=LDualW
ldualvsubval.m -˙=-D
ldualvsubval.w φWLMod
ldualvsubval.g φGF
ldualvsubval.h φHF
ldualvsubval.x φXV
Assertion ldualvsubval φG-˙HX=GXSHX

Proof

Step Hyp Ref Expression
1 ldualvsubval.v V=BaseW
2 ldualvsubval.r R=ScalarW
3 ldualvsubval.s S=-R
4 ldualvsubval.f F=LFnlW
5 ldualvsubval.d D=LDualW
6 ldualvsubval.m -˙=-D
7 ldualvsubval.w φWLMod
8 ldualvsubval.g φGF
9 ldualvsubval.h φHF
10 ldualvsubval.x φXV
11 5 7 lduallmod φDLMod
12 eqid BaseD=BaseD
13 4 5 12 7 8 ldualelvbase φGBaseD
14 4 5 12 7 9 ldualelvbase φHBaseD
15 eqid +D=+D
16 eqid ScalarD=ScalarD
17 eqid D=D
18 eqid invgScalarD=invgScalarD
19 eqid 1ScalarD=1ScalarD
20 12 15 6 16 17 18 19 lmodvsubval2 DLModGBaseDHBaseDG-˙H=G+DinvgScalarD1ScalarDDH
21 11 13 14 20 syl3anc φG-˙H=G+DinvgScalarD1ScalarDDH
22 21 fveq1d φG-˙HX=G+DinvgScalarD1ScalarDDHX
23 eqid +R=+R
24 eqid BaseR=BaseR
25 16 lmodfgrp DLModScalarDGrp
26 11 25 syl φScalarDGrp
27 16 lmodring DLModScalarDRing
28 11 27 syl φScalarDRing
29 eqid BaseScalarD=BaseScalarD
30 29 19 ringidcl ScalarDRing1ScalarDBaseScalarD
31 28 30 syl φ1ScalarDBaseScalarD
32 29 18 grpinvcl ScalarDGrp1ScalarDBaseScalarDinvgScalarD1ScalarDBaseScalarD
33 26 31 32 syl2anc φinvgScalarD1ScalarDBaseScalarD
34 2 24 5 16 29 7 ldualsbase φBaseScalarD=BaseR
35 33 34 eleqtrd φinvgScalarD1ScalarDBaseR
36 4 2 24 5 17 7 35 9 ldualvscl φinvgScalarD1ScalarDDHF
37 1 2 23 4 5 15 7 8 36 10 ldualvaddval φG+DinvgScalarD1ScalarDDHX=GX+RinvgScalarD1ScalarDDHX
38 eqid invgR=invgR
39 2 38 5 16 18 7 ldualneg φinvgScalarD=invgR
40 eqid 1R=1R
41 2 40 5 16 19 7 ldual1 φ1ScalarD=1R
42 39 41 fveq12d φinvgScalarD1ScalarD=invgR1R
43 42 oveq1d φinvgScalarD1ScalarDDH=invgR1RDH
44 43 fveq1d φinvgScalarD1ScalarDDHX=invgR1RDHX
45 eqid R=R
46 2 lmodring WLModRRing
47 7 46 syl φRRing
48 ringgrp RRingRGrp
49 47 48 syl φRGrp
50 2 24 40 lmod1cl WLMod1RBaseR
51 7 50 syl φ1RBaseR
52 24 38 grpinvcl RGrp1RBaseRinvgR1RBaseR
53 49 51 52 syl2anc φinvgR1RBaseR
54 4 1 2 24 45 5 17 7 53 9 10 ldualvsval φinvgR1RDHX=HXRinvgR1R
55 2 24 1 4 lflcl WLModHFXVHXBaseR
56 7 9 10 55 syl3anc φHXBaseR
57 24 45 40 38 47 56 ringnegr φHXRinvgR1R=invgRHX
58 44 54 57 3eqtrd φinvgScalarD1ScalarDDHX=invgRHX
59 58 oveq2d φGX+RinvgScalarD1ScalarDDHX=GX+RinvgRHX
60 2 24 1 4 lflcl WLModGFXVGXBaseR
61 7 8 10 60 syl3anc φGXBaseR
62 24 23 38 3 grpsubval GXBaseRHXBaseRGXSHX=GX+RinvgRHX
63 61 56 62 syl2anc φGXSHX=GX+RinvgRHX
64 59 63 eqtr4d φGX+RinvgScalarD1ScalarDDHX=GXSHX
65 22 37 64 3eqtrd φG-˙HX=GXSHX