Metamath Proof Explorer


Theorem lgambdd

Description: The log-Gamma function is bounded on the region U . (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φR
lgamgulm.u U=x|xRk01Rx+k
lgamgulm.g G=mzUzlogm+1mlogzm+1
Assertion lgambdd φrzUlogΓzr

Proof

Step Hyp Ref Expression
1 lgamgulm.r φR
2 lgamgulm.u U=x|xRk01Rx+k
3 lgamgulm.g G=mzUzlogm+1mlogzm+1
4 1 2 3 lgamgulm2 φzUlogΓzseq1f+GuUzUlogΓz+logz
5 4 simprd φseq1f+GuUzUlogΓz+logz
6 eqid mif2RmR2R+1m2Rlogm+1m+logR+1m+π=mif2RmR2R+1m2Rlogm+1m+logR+1m+π
7 1 2 3 6 lgamgulmlem6 φseq1f+GdomuUseq1f+GuUzUlogΓz+logzyzUlogΓz+logzy
8 7 simprd φseq1f+GuUzUlogΓz+logzyzUlogΓz+logzy
9 5 8 mpd φyzUlogΓz+logzy
10 1 nnrpd φR+
11 10 adantr φyR+
12 11 relogcld φylogR
13 pire π
14 13 a1i φyπ
15 12 14 readdcld φylogR+π
16 simpr φyy
17 15 16 readdcld φylogR+π+y
18 17 adantrr φyzUlogΓz+logzylogR+π+y
19 4 simpld φzUlogΓz
20 19 adantr φyzUlogΓz
21 20 r19.21bi φyzUlogΓz
22 21 abscld φyzUlogΓz
23 22 adantr φyzUlogΓz+logzylogΓz
24 11 adantr φyzUR+
25 24 relogcld φyzUlogR
26 13 a1i φyzUπ
27 25 26 readdcld φyzUlogR+π
28 1 2 lgamgulmlem1 φU
29 28 adantr φyU
30 29 sselda φyzUz
31 30 eldifad φyzUz
32 30 dmgmn0 φyzUz0
33 31 32 logcld φyzUlogz
34 21 33 addcld φyzUlogΓz+logz
35 34 abscld φyzUlogΓz+logz
36 27 35 readdcld φyzUlogR+π+logΓz+logz
37 36 adantr φyzUlogΓz+logzylogR+π+logΓz+logz
38 17 ad2antrr φyzUlogΓz+logzylogR+π+y
39 33 abscld φyzUlogz
40 39 35 readdcld φyzUlogz+logΓz+logz
41 33 negcld φyzUlogz
42 21 41 abs2difd φyzUlogΓzlogzlogΓzlogz
43 33 absnegd φyzUlogz=logz
44 43 oveq2d φyzUlogΓzlogz=logΓzlogz
45 21 33 subnegd φyzUlogΓzlogz=logΓz+logz
46 45 fveq2d φyzUlogΓzlogz=logΓz+logz
47 42 44 46 3brtr3d φyzUlogΓzlogzlogΓz+logz
48 22 39 35 lesubadd2d φyzUlogΓzlogzlogΓz+logzlogΓzlogz+logΓz+logz
49 47 48 mpbid φyzUlogΓzlogz+logΓz+logz
50 31 32 absrpcld φyzUz+
51 50 relogcld φyzUlogz
52 51 recnd φyzUlogz
53 52 abscld φyzUlogz
54 53 26 readdcld φyzUlogz+π
55 abslogle zz0logzlogz+π
56 31 32 55 syl2anc φyzUlogzlogz+π
57 df-neg logR=0logR
58 log1 log1=0
59 58 oveq1i log1logR=0logR
60 57 59 eqtr4i logR=log1logR
61 1rp 1+
62 relogdiv 1+R+log1R=log1logR
63 61 24 62 sylancr φyzUlog1R=log1logR
64 60 63 eqtr4id φyzUlogR=log1R
65 oveq2 k=0z+k=z+0
66 65 fveq2d k=0z+k=z+0
67 66 breq2d k=01Rz+k1Rz+0
68 fveq2 x=zx=z
69 68 breq1d x=zxRzR
70 fvoveq1 x=zx+k=z+k
71 70 breq2d x=z1Rx+k1Rz+k
72 71 ralbidv x=zk01Rx+kk01Rz+k
73 69 72 anbi12d x=zxRk01Rx+kzRk01Rz+k
74 73 2 elrab2 zUzzRk01Rz+k
75 74 simprbi zUzRk01Rz+k
76 75 adantl φyzUzRk01Rz+k
77 76 simprd φyzUk01Rz+k
78 0nn0 00
79 78 a1i φyzU00
80 67 77 79 rspcdva φyzU1Rz+0
81 31 addridd φyzUz+0=z
82 81 fveq2d φyzUz+0=z
83 80 82 breqtrd φyzU1Rz
84 24 rpreccld φyzU1R+
85 84 50 logled φyzU1Rzlog1Rlogz
86 83 85 mpbid φyzUlog1Rlogz
87 64 86 eqbrtrd φyzUlogRlogz
88 76 simpld φyzUzR
89 50 24 logled φyzUzRlogzlogR
90 88 89 mpbid φyzUlogzlogR
91 51 25 absled φyzUlogzlogRlogRlogzlogzlogR
92 87 90 91 mpbir2and φyzUlogzlogR
93 53 25 26 92 leadd1dd φyzUlogz+πlogR+π
94 39 54 27 56 93 letrd φyzUlogzlogR+π
95 39 27 35 94 leadd1dd φyzUlogz+logΓz+logzlogR+π+logΓz+logz
96 22 40 36 49 95 letrd φyzUlogΓzlogR+π+logΓz+logz
97 96 adantr φyzUlogΓz+logzylogΓzlogR+π+logΓz+logz
98 35 adantr φyzUlogΓz+logzylogΓz+logz
99 simpllr φyzUlogΓz+logzyy
100 27 adantr φyzUlogΓz+logzylogR+π
101 simpr φyzUlogΓz+logzylogΓz+logzy
102 98 99 100 101 leadd2dd φyzUlogΓz+logzylogR+π+logΓz+logzlogR+π+y
103 23 37 38 97 102 letrd φyzUlogΓz+logzylogΓzlogR+π+y
104 103 ex φyzUlogΓz+logzylogΓzlogR+π+y
105 104 ralimdva φyzUlogΓz+logzyzUlogΓzlogR+π+y
106 105 impr φyzUlogΓz+logzyzUlogΓzlogR+π+y
107 brralrspcev logR+π+yzUlogΓzlogR+π+yrzUlogΓzr
108 18 106 107 syl2anc φyzUlogΓz+logzyrzUlogΓzr
109 9 108 rexlimddv φrzUlogΓzr