Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo ). (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupvaluz.m | |
|
limsupvaluz.z | |
||
limsupvaluz.f | |
||
Assertion | limsupvaluz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupvaluz.m | |
|
2 | limsupvaluz.z | |
|
3 | limsupvaluz.f | |
|
4 | eqid | |
|
5 | 2 | fvexi | |
6 | 5 | a1i | |
7 | 3 6 | fexd | |
8 | uzssre | |
|
9 | 2 8 | eqsstri | |
10 | 9 | a1i | |
11 | 2 | uzsup | |
12 | 1 11 | syl | |
13 | 4 7 10 12 | limsupval2 | |
14 | 10 | mptimass | |
15 | oveq1 | |
|
16 | 15 | imaeq2d | |
17 | 16 | ineq1d | |
18 | 17 | supeq1d | |
19 | 18 | cbvmptv | |
20 | 19 | a1i | |
21 | fimass | |
|
22 | 3 21 | syl | |
23 | df-ss | |
|
24 | 23 | biimpi | |
25 | 22 24 | syl | |
26 | 25 | adantr | |
27 | df-ima | |
|
28 | 27 | a1i | |
29 | 3 | freld | |
30 | resindm | |
|
31 | 29 30 | syl | |
32 | 31 | adantr | |
33 | incom | |
|
34 | 2 | ineq1i | |
35 | 33 34 | eqtri | |
36 | 35 | a1i | |
37 | 3 | fdmd | |
38 | 37 | ineq2d | |
39 | 38 | adantr | |
40 | 2 | eleq2i | |
41 | 40 | biimpi | |
42 | 41 | adantl | |
43 | 42 | uzinico2 | |
44 | 36 39 43 | 3eqtr4d | |
45 | 44 | reseq2d | |
46 | 32 45 | eqtr3d | |
47 | 46 | rneqd | |
48 | 26 28 47 | 3eqtrd | |
49 | 48 | supeq1d | |
50 | 49 | mpteq2dva | |
51 | 20 50 | eqtrd | |
52 | 51 | rneqd | |
53 | 14 52 | eqtrd | |
54 | 53 | infeq1d | |
55 | fveq2 | |
|
56 | 55 | reseq2d | |
57 | 56 | rneqd | |
58 | 57 | supeq1d | |
59 | 58 | cbvmptv | |
60 | 59 | rneqi | |
61 | 60 | infeq1i | |
62 | 61 | a1i | |
63 | 13 54 62 | 3eqtrd | |