Metamath Proof Explorer


Theorem limsupvaluz

Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupvaluz.m φ M
limsupvaluz.z Z = M
limsupvaluz.f φ F : Z *
Assertion limsupvaluz φ lim sup F = sup ran k Z sup ran F k * < * <

Proof

Step Hyp Ref Expression
1 limsupvaluz.m φ M
2 limsupvaluz.z Z = M
3 limsupvaluz.f φ F : Z *
4 eqid i sup F i +∞ * * < = i sup F i +∞ * * <
5 2 fvexi Z V
6 5 a1i φ Z V
7 3 6 fexd φ F V
8 7 elexd φ F V
9 uzssre M
10 2 9 eqsstri Z
11 10 a1i φ Z
12 2 uzsup M sup Z * < = +∞
13 1 12 syl φ sup Z * < = +∞
14 4 8 11 13 limsupval2 φ lim sup F = sup i sup F i +∞ * * < Z * <
15 11 mptima2 φ i sup F i +∞ * * < Z = ran i Z sup F i +∞ * * <
16 oveq1 i = n i +∞ = n +∞
17 16 imaeq2d i = n F i +∞ = F n +∞
18 17 ineq1d i = n F i +∞ * = F n +∞ *
19 18 supeq1d i = n sup F i +∞ * * < = sup F n +∞ * * <
20 19 cbvmptv i Z sup F i +∞ * * < = n Z sup F n +∞ * * <
21 20 a1i φ i Z sup F i +∞ * * < = n Z sup F n +∞ * * <
22 fimass F : Z * F n +∞ *
23 3 22 syl φ F n +∞ *
24 df-ss F n +∞ * F n +∞ * = F n +∞
25 24 biimpi F n +∞ * F n +∞ * = F n +∞
26 23 25 syl φ F n +∞ * = F n +∞
27 26 adantr φ n Z F n +∞ * = F n +∞
28 df-ima F n +∞ = ran F n +∞
29 28 a1i φ n Z F n +∞ = ran F n +∞
30 3 freld φ Rel F
31 resindm Rel F F n +∞ dom F = F n +∞
32 30 31 syl φ F n +∞ dom F = F n +∞
33 32 adantr φ n Z F n +∞ dom F = F n +∞
34 incom n +∞ Z = Z n +∞
35 2 ineq1i Z n +∞ = M n +∞
36 34 35 eqtri n +∞ Z = M n +∞
37 36 a1i φ n Z n +∞ Z = M n +∞
38 3 fdmd φ dom F = Z
39 38 ineq2d φ n +∞ dom F = n +∞ Z
40 39 adantr φ n Z n +∞ dom F = n +∞ Z
41 2 eleq2i n Z n M
42 41 biimpi n Z n M
43 42 adantl φ n Z n M
44 43 uzinico2 φ n Z n = M n +∞
45 37 40 44 3eqtr4d φ n Z n +∞ dom F = n
46 45 reseq2d φ n Z F n +∞ dom F = F n
47 33 46 eqtr3d φ n Z F n +∞ = F n
48 47 rneqd φ n Z ran F n +∞ = ran F n
49 27 29 48 3eqtrd φ n Z F n +∞ * = ran F n
50 49 supeq1d φ n Z sup F n +∞ * * < = sup ran F n * <
51 50 mpteq2dva φ n Z sup F n +∞ * * < = n Z sup ran F n * <
52 21 51 eqtrd φ i Z sup F i +∞ * * < = n Z sup ran F n * <
53 52 rneqd φ ran i Z sup F i +∞ * * < = ran n Z sup ran F n * <
54 15 53 eqtrd φ i sup F i +∞ * * < Z = ran n Z sup ran F n * <
55 54 infeq1d φ sup i sup F i +∞ * * < Z * < = sup ran n Z sup ran F n * < * <
56 fveq2 n = k n = k
57 56 reseq2d n = k F n = F k
58 57 rneqd n = k ran F n = ran F k
59 58 supeq1d n = k sup ran F n * < = sup ran F k * <
60 59 cbvmptv n Z sup ran F n * < = k Z sup ran F k * <
61 60 rneqi ran n Z sup ran F n * < = ran k Z sup ran F k * <
62 61 infeq1i sup ran n Z sup ran F n * < * < = sup ran k Z sup ran F k * < * <
63 62 a1i φ sup ran n Z sup ran F n * < * < = sup ran k Z sup ran F k * < * <
64 14 55 63 3eqtrd φ lim sup F = sup ran k Z sup ran F k * < * <