Metamath Proof Explorer


Theorem limsupvaluz

Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupvaluz.m φM
limsupvaluz.z Z=M
limsupvaluz.f φF:Z*
Assertion limsupvaluz φlim supF=suprankZsupranFk*<*<

Proof

Step Hyp Ref Expression
1 limsupvaluz.m φM
2 limsupvaluz.z Z=M
3 limsupvaluz.f φF:Z*
4 eqid isupFi+∞**<=isupFi+∞**<
5 2 fvexi ZV
6 5 a1i φZV
7 3 6 fexd φFV
8 uzssre M
9 2 8 eqsstri Z
10 9 a1i φZ
11 2 uzsup MsupZ*<=+∞
12 1 11 syl φsupZ*<=+∞
13 4 7 10 12 limsupval2 φlim supF=supisupFi+∞**<Z*<
14 10 mptimass φisupFi+∞**<Z=raniZsupFi+∞**<
15 oveq1 i=ni+∞=n+∞
16 15 imaeq2d i=nFi+∞=Fn+∞
17 16 ineq1d i=nFi+∞*=Fn+∞*
18 17 supeq1d i=nsupFi+∞**<=supFn+∞**<
19 18 cbvmptv iZsupFi+∞**<=nZsupFn+∞**<
20 19 a1i φiZsupFi+∞**<=nZsupFn+∞**<
21 fimass F:Z*Fn+∞*
22 3 21 syl φFn+∞*
23 df-ss Fn+∞*Fn+∞*=Fn+∞
24 23 biimpi Fn+∞*Fn+∞*=Fn+∞
25 22 24 syl φFn+∞*=Fn+∞
26 25 adantr φnZFn+∞*=Fn+∞
27 df-ima Fn+∞=ranFn+∞
28 27 a1i φnZFn+∞=ranFn+∞
29 3 freld φRelF
30 resindm RelFFn+∞domF=Fn+∞
31 29 30 syl φFn+∞domF=Fn+∞
32 31 adantr φnZFn+∞domF=Fn+∞
33 incom n+∞Z=Zn+∞
34 2 ineq1i Zn+∞=Mn+∞
35 33 34 eqtri n+∞Z=Mn+∞
36 35 a1i φnZn+∞Z=Mn+∞
37 3 fdmd φdomF=Z
38 37 ineq2d φn+∞domF=n+∞Z
39 38 adantr φnZn+∞domF=n+∞Z
40 2 eleq2i nZnM
41 40 biimpi nZnM
42 41 adantl φnZnM
43 42 uzinico2 φnZn=Mn+∞
44 36 39 43 3eqtr4d φnZn+∞domF=n
45 44 reseq2d φnZFn+∞domF=Fn
46 32 45 eqtr3d φnZFn+∞=Fn
47 46 rneqd φnZranFn+∞=ranFn
48 26 28 47 3eqtrd φnZFn+∞*=ranFn
49 48 supeq1d φnZsupFn+∞**<=supranFn*<
50 49 mpteq2dva φnZsupFn+∞**<=nZsupranFn*<
51 20 50 eqtrd φiZsupFi+∞**<=nZsupranFn*<
52 51 rneqd φraniZsupFi+∞**<=rannZsupranFn*<
53 14 52 eqtrd φisupFi+∞**<Z=rannZsupranFn*<
54 53 infeq1d φsupisupFi+∞**<Z*<=suprannZsupranFn*<*<
55 fveq2 n=kn=k
56 55 reseq2d n=kFn=Fk
57 56 rneqd n=kranFn=ranFk
58 57 supeq1d n=ksupranFn*<=supranFk*<
59 58 cbvmptv nZsupranFn*<=kZsupranFk*<
60 59 rneqi rannZsupranFn*<=rankZsupranFk*<
61 60 infeq1i suprannZsupranFn*<*<=suprankZsupranFk*<*<
62 61 a1i φsuprannZsupranFn*<*<=suprankZsupranFk*<*<
63 13 54 62 3eqtrd φlim supF=suprankZsupranFk*<*<