Step |
Hyp |
Ref |
Expression |
1 |
|
drngring |
|
2 |
|
eqid |
|
3 |
2
|
frlmlmod |
|
4 |
1 3
|
sylan |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 6
|
lssmre |
|
8 |
4 7
|
syl |
|
9 |
8
|
3adant3 |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
2
|
frlmsca |
|
13 |
|
simpl |
|
14 |
12 13
|
eqeltrrd |
|
15 |
|
eqid |
|
16 |
15
|
islvec |
|
17 |
4 14 16
|
sylanbrc |
|
18 |
6 10 5
|
lssacsex |
|
19 |
17 18
|
syl |
|
20 |
19
|
simprd |
|
21 |
20
|
3adant3 |
|
22 |
|
dif0 |
|
23 |
22
|
linds1 |
|
24 |
23
|
3ad2ant3 |
|
25 |
|
eqid |
|
26 |
25 2 5
|
uvcff |
|
27 |
1 26
|
sylan |
|
28 |
27
|
frnd |
|
29 |
28 22
|
sseqtrrdi |
|
30 |
29
|
3adant3 |
|
31 |
5
|
linds1 |
|
32 |
31
|
3ad2ant3 |
|
33 |
|
un0 |
|
34 |
33
|
fveq2i |
|
35 |
|
eqid |
|
36 |
6 35 10
|
mrclsp |
|
37 |
4 36
|
syl |
|
38 |
37
|
fveq1d |
|
39 |
|
eqid |
|
40 |
2 25 39
|
frlmlbs |
|
41 |
1 40
|
sylan |
|
42 |
5 39 35
|
lbssp |
|
43 |
41 42
|
syl |
|
44 |
38 43
|
eqtr3d |
|
45 |
34 44
|
eqtrid |
|
46 |
45
|
3adant3 |
|
47 |
32 46
|
sseqtrrd |
|
48 |
|
un0 |
|
49 |
|
drngnzr |
|
50 |
49
|
adantr |
|
51 |
12 50
|
eqeltrrd |
|
52 |
4 51
|
jca |
|
53 |
35 15
|
lindsind2 |
|
54 |
53
|
3expa |
|
55 |
52 54
|
sylanl1 |
|
56 |
37
|
fveq1d |
|
57 |
56
|
eleq2d |
|
58 |
57
|
ad2antrr |
|
59 |
55 58
|
mtbid |
|
60 |
59
|
ralrimiva |
|
61 |
60
|
3impa |
|
62 |
10 11
|
ismri2 |
|
63 |
8 31 62
|
syl2an |
|
64 |
63
|
3impa |
|
65 |
61 64
|
mpbird |
|
66 |
48 65
|
eqeltrid |
|
67 |
|
simpr |
|
68 |
25
|
uvcendim |
|
69 |
49 68
|
sylan |
|
70 |
|
enfi |
|
71 |
69 70
|
syl |
|
72 |
67 71
|
mpbid |
|
73 |
72
|
olcd |
|
74 |
73
|
3adant3 |
|
75 |
9 10 11 21 24 30 47 66 74
|
mreexexd |
|
76 |
|
simpl |
|
77 |
|
ovex |
|
78 |
77
|
rnex |
|
79 |
|
elpwi |
|
80 |
|
ssdomg |
|
81 |
78 79 80
|
mpsyl |
|
82 |
|
endomtr |
|
83 |
76 81 82
|
syl2anr |
|
84 |
83
|
rexlimiva |
|
85 |
75 84
|
syl |
|
86 |
69
|
ensymd |
|
87 |
86
|
3adant3 |
|
88 |
|
domentr |
|
89 |
85 87 88
|
syl2anc |
|