Metamath Proof Explorer


Theorem lindsdom

Description: A linearly independent set in a free linear module of finite dimension over a division ring is smaller than the dimension of the module. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion lindsdom R DivRing I Fin X LIndS R freeLMod I X I

Proof

Step Hyp Ref Expression
1 drngring R DivRing R Ring
2 eqid R freeLMod I = R freeLMod I
3 2 frlmlmod R Ring I Fin R freeLMod I LMod
4 1 3 sylan R DivRing I Fin R freeLMod I LMod
5 eqid Base R freeLMod I = Base R freeLMod I
6 eqid LSubSp R freeLMod I = LSubSp R freeLMod I
7 5 6 lssmre R freeLMod I LMod LSubSp R freeLMod I Moore Base R freeLMod I
8 4 7 syl R DivRing I Fin LSubSp R freeLMod I Moore Base R freeLMod I
9 8 3adant3 R DivRing I Fin X LIndS R freeLMod I LSubSp R freeLMod I Moore Base R freeLMod I
10 eqid mrCls LSubSp R freeLMod I = mrCls LSubSp R freeLMod I
11 eqid mrInd LSubSp R freeLMod I = mrInd LSubSp R freeLMod I
12 2 frlmsca R DivRing I Fin R = Scalar R freeLMod I
13 simpl R DivRing I Fin R DivRing
14 12 13 eqeltrrd R DivRing I Fin Scalar R freeLMod I DivRing
15 eqid Scalar R freeLMod I = Scalar R freeLMod I
16 15 islvec R freeLMod I LVec R freeLMod I LMod Scalar R freeLMod I DivRing
17 4 14 16 sylanbrc R DivRing I Fin R freeLMod I LVec
18 6 10 5 lssacsex R freeLMod I LVec LSubSp R freeLMod I ACS Base R freeLMod I x 𝒫 Base R freeLMod I y Base R freeLMod I z mrCls LSubSp R freeLMod I x y mrCls LSubSp R freeLMod I x y mrCls LSubSp R freeLMod I x z
19 17 18 syl R DivRing I Fin LSubSp R freeLMod I ACS Base R freeLMod I x 𝒫 Base R freeLMod I y Base R freeLMod I z mrCls LSubSp R freeLMod I x y mrCls LSubSp R freeLMod I x y mrCls LSubSp R freeLMod I x z
20 19 simprd R DivRing I Fin x 𝒫 Base R freeLMod I y Base R freeLMod I z mrCls LSubSp R freeLMod I x y mrCls LSubSp R freeLMod I x y mrCls LSubSp R freeLMod I x z
21 20 3adant3 R DivRing I Fin X LIndS R freeLMod I x 𝒫 Base R freeLMod I y Base R freeLMod I z mrCls LSubSp R freeLMod I x y mrCls LSubSp R freeLMod I x y mrCls LSubSp R freeLMod I x z
22 dif0 Base R freeLMod I = Base R freeLMod I
23 22 linds1 X LIndS R freeLMod I X Base R freeLMod I
24 23 3ad2ant3 R DivRing I Fin X LIndS R freeLMod I X Base R freeLMod I
25 eqid R unitVec I = R unitVec I
26 25 2 5 uvcff R Ring I Fin R unitVec I : I Base R freeLMod I
27 1 26 sylan R DivRing I Fin R unitVec I : I Base R freeLMod I
28 27 frnd R DivRing I Fin ran R unitVec I Base R freeLMod I
29 28 22 sseqtrrdi R DivRing I Fin ran R unitVec I Base R freeLMod I
30 29 3adant3 R DivRing I Fin X LIndS R freeLMod I ran R unitVec I Base R freeLMod I
31 5 linds1 X LIndS R freeLMod I X Base R freeLMod I
32 31 3ad2ant3 R DivRing I Fin X LIndS R freeLMod I X Base R freeLMod I
33 un0 ran R unitVec I = ran R unitVec I
34 33 fveq2i mrCls LSubSp R freeLMod I ran R unitVec I = mrCls LSubSp R freeLMod I ran R unitVec I
35 eqid LSpan R freeLMod I = LSpan R freeLMod I
36 6 35 10 mrclsp R freeLMod I LMod LSpan R freeLMod I = mrCls LSubSp R freeLMod I
37 4 36 syl R DivRing I Fin LSpan R freeLMod I = mrCls LSubSp R freeLMod I
38 37 fveq1d R DivRing I Fin LSpan R freeLMod I ran R unitVec I = mrCls LSubSp R freeLMod I ran R unitVec I
39 eqid LBasis R freeLMod I = LBasis R freeLMod I
40 2 25 39 frlmlbs R Ring I Fin ran R unitVec I LBasis R freeLMod I
41 1 40 sylan R DivRing I Fin ran R unitVec I LBasis R freeLMod I
42 5 39 35 lbssp ran R unitVec I LBasis R freeLMod I LSpan R freeLMod I ran R unitVec I = Base R freeLMod I
43 41 42 syl R DivRing I Fin LSpan R freeLMod I ran R unitVec I = Base R freeLMod I
44 38 43 eqtr3d R DivRing I Fin mrCls LSubSp R freeLMod I ran R unitVec I = Base R freeLMod I
45 34 44 eqtrid R DivRing I Fin mrCls LSubSp R freeLMod I ran R unitVec I = Base R freeLMod I
46 45 3adant3 R DivRing I Fin X LIndS R freeLMod I mrCls LSubSp R freeLMod I ran R unitVec I = Base R freeLMod I
47 32 46 sseqtrrd R DivRing I Fin X LIndS R freeLMod I X mrCls LSubSp R freeLMod I ran R unitVec I
48 un0 X = X
49 drngnzr R DivRing R NzRing
50 49 adantr R DivRing I Fin R NzRing
51 12 50 eqeltrrd R DivRing I Fin Scalar R freeLMod I NzRing
52 4 51 jca R DivRing I Fin R freeLMod I LMod Scalar R freeLMod I NzRing
53 35 15 lindsind2 R freeLMod I LMod Scalar R freeLMod I NzRing X LIndS R freeLMod I y X ¬ y LSpan R freeLMod I X y
54 53 3expa R freeLMod I LMod Scalar R freeLMod I NzRing X LIndS R freeLMod I y X ¬ y LSpan R freeLMod I X y
55 52 54 sylanl1 R DivRing I Fin X LIndS R freeLMod I y X ¬ y LSpan R freeLMod I X y
56 37 fveq1d R DivRing I Fin LSpan R freeLMod I X y = mrCls LSubSp R freeLMod I X y
57 56 eleq2d R DivRing I Fin y LSpan R freeLMod I X y y mrCls LSubSp R freeLMod I X y
58 57 ad2antrr R DivRing I Fin X LIndS R freeLMod I y X y LSpan R freeLMod I X y y mrCls LSubSp R freeLMod I X y
59 55 58 mtbid R DivRing I Fin X LIndS R freeLMod I y X ¬ y mrCls LSubSp R freeLMod I X y
60 59 ralrimiva R DivRing I Fin X LIndS R freeLMod I y X ¬ y mrCls LSubSp R freeLMod I X y
61 60 3impa R DivRing I Fin X LIndS R freeLMod I y X ¬ y mrCls LSubSp R freeLMod I X y
62 10 11 ismri2 LSubSp R freeLMod I Moore Base R freeLMod I X Base R freeLMod I X mrInd LSubSp R freeLMod I y X ¬ y mrCls LSubSp R freeLMod I X y
63 8 31 62 syl2an R DivRing I Fin X LIndS R freeLMod I X mrInd LSubSp R freeLMod I y X ¬ y mrCls LSubSp R freeLMod I X y
64 63 3impa R DivRing I Fin X LIndS R freeLMod I X mrInd LSubSp R freeLMod I y X ¬ y mrCls LSubSp R freeLMod I X y
65 61 64 mpbird R DivRing I Fin X LIndS R freeLMod I X mrInd LSubSp R freeLMod I
66 48 65 eqeltrid R DivRing I Fin X LIndS R freeLMod I X mrInd LSubSp R freeLMod I
67 simpr R DivRing I Fin I Fin
68 25 uvcendim R NzRing I Fin I ran R unitVec I
69 49 68 sylan R DivRing I Fin I ran R unitVec I
70 enfi I ran R unitVec I I Fin ran R unitVec I Fin
71 69 70 syl R DivRing I Fin I Fin ran R unitVec I Fin
72 67 71 mpbid R DivRing I Fin ran R unitVec I Fin
73 72 olcd R DivRing I Fin X Fin ran R unitVec I Fin
74 73 3adant3 R DivRing I Fin X LIndS R freeLMod I X Fin ran R unitVec I Fin
75 9 10 11 21 24 30 47 66 74 mreexexd R DivRing I Fin X LIndS R freeLMod I f 𝒫 ran R unitVec I X f f mrInd LSubSp R freeLMod I
76 simpl X f f mrInd LSubSp R freeLMod I X f
77 ovex R unitVec I V
78 77 rnex ran R unitVec I V
79 elpwi f 𝒫 ran R unitVec I f ran R unitVec I
80 ssdomg ran R unitVec I V f ran R unitVec I f ran R unitVec I
81 78 79 80 mpsyl f 𝒫 ran R unitVec I f ran R unitVec I
82 endomtr X f f ran R unitVec I X ran R unitVec I
83 76 81 82 syl2anr f 𝒫 ran R unitVec I X f f mrInd LSubSp R freeLMod I X ran R unitVec I
84 83 rexlimiva f 𝒫 ran R unitVec I X f f mrInd LSubSp R freeLMod I X ran R unitVec I
85 75 84 syl R DivRing I Fin X LIndS R freeLMod I X ran R unitVec I
86 69 ensymd R DivRing I Fin ran R unitVec I I
87 86 3adant3 R DivRing I Fin X LIndS R freeLMod I ran R unitVec I I
88 domentr X ran R unitVec I ran R unitVec I I X I
89 85 87 88 syl2anc R DivRing I Fin X LIndS R freeLMod I X I