Metamath Proof Explorer


Theorem line2y

Description: Example for a vertical line G passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023)

Ref Expression
Hypotheses line2.i I=12
line2.e E=msup
line2.p P=I
line2.l L=LineME
line2.g G=pP|Ap1+Bp2=C
line2y.x X=102M
line2y.y Y=102N
Assertion line2y ABCMNMNG=XLYA0B=0C=0

Proof

Step Hyp Ref Expression
1 line2.i I=12
2 line2.e E=msup
3 line2.p P=I
4 line2.l L=LineME
5 line2.g G=pP|Ap1+Bp2=C
6 line2y.x X=102M
7 line2y.y Y=102N
8 5 a1i ABCMNMNG=pP|Ap1+Bp2=C
9 1ex 1V
10 2ex 2V
11 9 10 pm3.2i 1V2V
12 c0ex 0V
13 12 jctl M0VM
14 1ne2 12
15 14 a1i M12
16 fprg 1V2V0VM12102M:120M
17 0red 1V2V0VM120
18 simp2r 1V2V0VM12M
19 17 18 prssd 1V2V0VM120M
20 16 19 fssd 1V2V0VM12102M:12
21 11 13 15 20 mp3an2i M102M:12
22 1 feq2i 102M:I102M:12
23 21 22 sylibr M102M:I
24 reex V
25 prex 12V
26 1 25 eqeltri IV
27 24 26 elmap 102MI102M:I
28 23 27 sylibr M102MI
29 28 6 3 3eltr4g MXP
30 29 3ad2ant1 MNMNXP
31 12 jctl N0VN
32 14 a1i N12
33 fprg 1V2V0VN12102N:120N
34 11 31 32 33 mp3an2i N102N:120N
35 0re 0
36 prssi 0N0N
37 35 36 mpan N0N
38 34 37 fssd N102N:12
39 1 feq2i 102N:I102N:12
40 38 39 sylibr N102N:I
41 24 26 pm3.2i VIV
42 elmapg VIV102NI102N:I
43 41 42 mp1i N102NI102N:I
44 40 43 mpbird N102NI
45 44 7 3 3eltr4g NYP
46 45 3ad2ant2 MNMNYP
47 6 fveq1i X1=102M1
48 9 12 14 3pm3.2i 1V0V12
49 fvpr1g 1V0V12102M1=0
50 48 49 mp1i MNMN102M1=0
51 47 50 eqtrid MNMNX1=0
52 7 fveq1i Y1=102N1
53 fvpr1g 1V0V12102N1=0
54 48 53 mp1i MNMN102N1=0
55 52 54 eqtrid MNMNY1=0
56 51 55 eqtr4d MNMNX1=Y1
57 simp3 MNMNMN
58 6 fveq1i X2=102M2
59 simp1 MNMNM
60 14 a1i MNMN12
61 fvpr2g 2VM12102M2=M
62 10 59 60 61 mp3an2i MNMN102M2=M
63 58 62 eqtrid MNMNX2=M
64 7 fveq1i Y2=102N2
65 simp2 MNMNN
66 fvpr2g 2VN12102N2=N
67 10 65 60 66 mp3an2i MNMN102N2=N
68 64 67 eqtrid MNMNY2=N
69 57 63 68 3netr4d MNMNX2Y2
70 56 69 jca MNMNX1=Y1X2Y2
71 30 46 70 3jca MNMNXPYPX1=Y1X2Y2
72 71 adantl ABCMNMNXPYPX1=Y1X2Y2
73 1 2 3 4 rrx2vlinest XPYPX1=Y1X2Y2XLY=pP|p1=X1
74 72 73 syl ABCMNMNXLY=pP|p1=X1
75 8 74 eqeq12d ABCMNMNG=XLYpP|Ap1+Bp2=C=pP|p1=X1
76 48 49 ax-mp 102M1=0
77 47 76 eqtri X1=0
78 77 a1i ABCMNMNX1=0
79 78 eqeq2d ABCMNMNp1=X1p1=0
80 79 rabbidv ABCMNMNpP|p1=X1=pP|p1=0
81 80 eqeq2d ABCMNMNpP|Ap1+Bp2=C=pP|p1=X1pP|Ap1+Bp2=C=pP|p1=0
82 rabbi pPAp1+Bp2=Cp1=0pP|Ap1+Bp2=C=pP|p1=0
83 1 3 line2ylem ABCpPAp1+Bp2=Cp1=0A0B=0C=0
84 83 adantr ABCMNMNpPAp1+Bp2=Cp1=0A0B=0C=0
85 oveq1 B=0Bp2=0p2
86 85 3ad2ant2 A0B=0C=0Bp2=0p2
87 86 oveq2d A0B=0C=0Ap1+Bp2=Ap1+0p2
88 simp3 A0B=0C=0C=0
89 87 88 eqeq12d A0B=0C=0Ap1+Bp2=CAp1+0p2=0
90 89 ad2antlr ABCMNMNA0B=0C=0pPAp1+Bp2=CAp1+0p2=0
91 1 3 rrx2pyel pPp2
92 91 recnd pPp2
93 92 mul02d pP0p2=0
94 93 adantl ABCMNMNA0B=0C=0pP0p2=0
95 94 oveq2d ABCMNMNA0B=0C=0pPAp1+0p2=Ap1+0
96 simp1 ABCA
97 96 recnd ABCA
98 97 ad3antrrr ABCMNMNA0B=0C=0pPA
99 1 3 rrx2pxel pPp1
100 99 recnd pPp1
101 100 adantl ABCMNMNA0B=0C=0pPp1
102 98 101 mulcld ABCMNMNA0B=0C=0pPAp1
103 102 addridd ABCMNMNA0B=0C=0pPAp1+0=Ap1
104 95 103 eqtrd ABCMNMNA0B=0C=0pPAp1+0p2=Ap1
105 104 eqeq1d ABCMNMNA0B=0C=0pPAp1+0p2=0Ap1=0
106 98 101 mul0ord ABCMNMNA0B=0C=0pPAp1=0A=0p1=0
107 eqneqall A=0A0p1=0
108 107 com12 A0A=0p1=0
109 108 3ad2ant1 A0B=0C=0A=0p1=0
110 109 ad2antlr ABCMNMNA0B=0C=0pPA=0p1=0
111 idd ABCMNMNA0B=0C=0pPp1=0p1=0
112 110 111 jaod ABCMNMNA0B=0C=0pPA=0p1=0p1=0
113 olc p1=0A=0p1=0
114 112 113 impbid1 ABCMNMNA0B=0C=0pPA=0p1=0p1=0
115 106 114 bitrd ABCMNMNA0B=0C=0pPAp1=0p1=0
116 90 105 115 3bitrd ABCMNMNA0B=0C=0pPAp1+Bp2=Cp1=0
117 116 ralrimiva ABCMNMNA0B=0C=0pPAp1+Bp2=Cp1=0
118 117 ex ABCMNMNA0B=0C=0pPAp1+Bp2=Cp1=0
119 84 118 impbid ABCMNMNpPAp1+Bp2=Cp1=0A0B=0C=0
120 82 119 bitr3id ABCMNMNpP|Ap1+Bp2=C=pP|p1=0A0B=0C=0
121 75 81 120 3bitrd ABCMNMNG=XLYA0B=0C=0