Metamath Proof Explorer


Theorem logbgcd1irr

Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is an irrational number if the argument and the base are relatively prime. For example, ( 2 logb 9 ) e. ( RR \ QQ ) (see 2logb9irr ). (Contributed by AV, 29-Dec-2022)

Ref Expression
Assertion logbgcd1irr X2B2XgcdB=1logBX

Proof

Step Hyp Ref Expression
1 eluz2nn B2B
2 1 nnrpd B2B+
3 2 3ad2ant2 X2B2XgcdB=1B+
4 eluz2nn X2X
5 4 nnrpd X2X+
6 5 3ad2ant1 X2B2XgcdB=1X+
7 eluz2b3 B2BB1
8 7 simprbi B2B1
9 8 3ad2ant2 X2B2XgcdB=1B1
10 3 6 9 3jca X2B2XgcdB=1B+X+B1
11 relogbcl B+X+B1logBX
12 10 11 syl X2B2XgcdB=1logBX
13 eluz2gt1 X21<X
14 13 adantr X2B21<X
15 4 adantr X2B2X
16 15 nnrpd X2B2X+
17 1 adantl X2B2B
18 17 nnrpd X2B2B+
19 eluz2gt1 B21<B
20 19 adantl X2B21<B
21 logbgt0b X+B+1<B0<logBX1<X
22 16 18 20 21 syl12anc X2B20<logBX1<X
23 14 22 mpbird X2B20<logBX
24 23 anim1ci X2B2logBXlogBX0<logBX
25 elpq logBX0<logBXmnlogBX=mn
26 24 25 syl X2B2logBXmnlogBX=mn
27 26 ex X2B2logBXmnlogBX=mn
28 oveq2 mn=logBXBmn=BlogBX
29 28 eqcoms logBX=mnBmn=BlogBX
30 eluzelcn B2B
31 30 adantl X2B2B
32 nnne0 BB0
33 1 32 syl B2B0
34 33 8 nelprd B2¬B01
35 34 adantl X2B2¬B01
36 31 35 eldifd X2B2B01
37 eluzelcn X2X
38 37 adantr X2B2X
39 nnne0 XX0
40 nelsn X0¬X0
41 4 39 40 3syl X2¬X0
42 41 adantr X2B2¬X0
43 38 42 eldifd X2B2X0
44 cxplogb B01X0BlogBX=X
45 36 43 44 syl2anc X2B2BlogBX=X
46 45 adantr X2B2mnBlogBX=X
47 29 46 sylan9eqr X2B2mnlogBX=mnBmn=X
48 47 ex X2B2mnlogBX=mnBmn=X
49 oveq1 Bmn=XBmnn=Xn
50 31 adantr X2B2mnB
51 nncn mm
52 51 adantr mnm
53 nncn nn
54 53 adantl mnn
55 nnne0 nn0
56 55 adantl mnn0
57 52 54 56 3jca mnmnn0
58 divcl mnn0mn
59 57 58 syl mnmn
60 59 adantl X2B2mnmn
61 nnnn0 nn0
62 61 adantl mnn0
63 62 adantl X2B2mnn0
64 50 60 63 3jca X2B2mnBmnn0
65 cxpmul2 Bmnn0Bmnn=Bmnn
66 65 eqcomd Bmnn0Bmnn=Bmnn
67 64 66 syl X2B2mnBmnn=Bmnn
68 57 adantl X2B2mnmnn0
69 divcan1 mnn0mnn=m
70 68 69 syl X2B2mnmnn=m
71 70 oveq2d X2B2mnBmnn=Bm
72 33 adantl X2B2B0
73 72 adantr X2B2mnB0
74 nnz mm
75 74 adantr mnm
76 75 adantl X2B2mnm
77 50 73 76 cxpexpzd X2B2mnBm=Bm
78 71 77 eqtrd X2B2mnBmnn=Bm
79 67 78 eqtrd X2B2mnBmnn=Bm
80 79 eqeq1d X2B2mnBmnn=XnBm=Xn
81 simpr mnn
82 rplpwr XBnXgcdB=1XngcdB=1
83 15 17 81 82 syl2an3an X2B2mnXgcdB=1XngcdB=1
84 oveq1 Xn=BmXngcdB=BmgcdB
85 84 eqeq1d Xn=BmXngcdB=1BmgcdB=1
86 85 eqcoms Bm=XnXngcdB=1BmgcdB=1
87 86 adantl X2B2mnBm=XnXngcdB=1BmgcdB=1
88 eluzelz B2B
89 88 adantl X2B2B
90 simpl mnm
91 rpexp BBmBmgcdB=1BgcdB=1
92 89 89 90 91 syl2an3an X2B2mnBmgcdB=1BgcdB=1
93 gcdid BBgcdB=B
94 88 93 syl B2BgcdB=B
95 eluzelre B2B
96 nnnn0 BB0
97 nn0ge0 B00B
98 1 96 97 3syl B20B
99 95 98 absidd B2B=B
100 94 99 eqtrd B2BgcdB=B
101 100 eqeq1d B2BgcdB=1B=1
102 101 adantl X2B2BgcdB=1B=1
103 102 adantr X2B2mnBgcdB=1B=1
104 eqneqall B=1B1¬XgcdB=1
105 8 104 syl5com B2B=1¬XgcdB=1
106 105 adantl X2B2B=1¬XgcdB=1
107 106 adantr X2B2mnB=1¬XgcdB=1
108 103 107 sylbid X2B2mnBgcdB=1¬XgcdB=1
109 92 108 sylbid X2B2mnBmgcdB=1¬XgcdB=1
110 109 adantr X2B2mnBm=XnBmgcdB=1¬XgcdB=1
111 87 110 sylbid X2B2mnBm=XnXngcdB=1¬XgcdB=1
112 111 ex X2B2mnBm=XnXngcdB=1¬XgcdB=1
113 112 com23 X2B2mnXngcdB=1Bm=Xn¬XgcdB=1
114 83 113 syld X2B2mnXgcdB=1Bm=Xn¬XgcdB=1
115 ax-1 ¬XgcdB=1Bm=Xn¬XgcdB=1
116 114 115 pm2.61d1 X2B2mnBm=Xn¬XgcdB=1
117 80 116 sylbid X2B2mnBmnn=Xn¬XgcdB=1
118 49 117 syl5 X2B2mnBmn=X¬XgcdB=1
119 48 118 syld X2B2mnlogBX=mn¬XgcdB=1
120 119 rexlimdvva X2B2mnlogBX=mn¬XgcdB=1
121 27 120 syld X2B2logBX¬XgcdB=1
122 121 con2d X2B2XgcdB=1¬logBX
123 122 3impia X2B2XgcdB=1¬logBX
124 12 123 eldifd X2B2XgcdB=1logBX