| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lshpsmreu.v |  | 
						
							| 2 |  | lshpsmreu.a |  | 
						
							| 3 |  | lshpsmreu.n |  | 
						
							| 4 |  | lshpsmreu.p |  | 
						
							| 5 |  | lshpsmreu.h |  | 
						
							| 6 |  | lshpsmreu.w |  | 
						
							| 7 |  | lshpsmreu.u |  | 
						
							| 8 |  | lshpsmreu.z |  | 
						
							| 9 |  | lshpsmreu.x |  | 
						
							| 10 |  | lshpsmreu.e |  | 
						
							| 11 |  | lshpsmreu.d |  | 
						
							| 12 |  | lshpsmreu.k |  | 
						
							| 13 |  | lshpsmreu.t |  | 
						
							| 14 | 9 10 | eleqtrrd |  | 
						
							| 15 |  | lveclmod |  | 
						
							| 16 | 6 15 | syl |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 | lsssssubg |  | 
						
							| 19 | 16 18 | syl |  | 
						
							| 20 | 17 5 16 7 | lshplss |  | 
						
							| 21 | 19 20 | sseldd |  | 
						
							| 22 | 1 17 3 | lspsncl |  | 
						
							| 23 | 16 8 22 | syl2anc |  | 
						
							| 24 | 19 23 | sseldd |  | 
						
							| 25 | 2 4 | lsmelval |  | 
						
							| 26 | 21 24 25 | syl2anc |  | 
						
							| 27 | 14 26 | mpbid |  | 
						
							| 28 |  | df-rex |  | 
						
							| 29 | 11 12 1 13 3 | ellspsn |  | 
						
							| 30 | 16 8 29 | syl2anc |  | 
						
							| 31 | 30 | anbi1d |  | 
						
							| 32 |  | r19.41v |  | 
						
							| 33 | 31 32 | bitr4di |  | 
						
							| 34 | 33 | exbidv |  | 
						
							| 35 |  | rexcom4 |  | 
						
							| 36 |  | ovex |  | 
						
							| 37 |  | oveq2 |  | 
						
							| 38 | 37 | eqeq2d |  | 
						
							| 39 | 36 38 | ceqsexv |  | 
						
							| 40 | 39 | rexbii |  | 
						
							| 41 | 35 40 | bitr3i |  | 
						
							| 42 | 34 41 | bitrdi |  | 
						
							| 43 | 28 42 | bitrid |  | 
						
							| 44 | 43 | rexbidv |  | 
						
							| 45 | 27 44 | mpbid |  | 
						
							| 46 |  | rexcom |  | 
						
							| 47 | 45 46 | sylib |  | 
						
							| 48 |  | oveq1 |  | 
						
							| 49 | 48 | eqeq2d |  | 
						
							| 50 | 49 | cbvrexvw |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 |  | simp11l |  | 
						
							| 54 | 53 21 | syl |  | 
						
							| 55 | 53 24 | syl |  | 
						
							| 56 | 1 51 3 4 5 6 7 8 10 | lshpdisj |  | 
						
							| 57 | 53 56 | syl |  | 
						
							| 58 | 53 6 | syl |  | 
						
							| 59 | 58 15 | syl |  | 
						
							| 60 |  | lmodabl |  | 
						
							| 61 | 59 60 | syl |  | 
						
							| 62 | 52 61 54 55 | ablcntzd |  | 
						
							| 63 |  | simp12 |  | 
						
							| 64 |  | simp2 |  | 
						
							| 65 |  | simp1rl |  | 
						
							| 66 | 65 | 3ad2ant1 |  | 
						
							| 67 | 53 8 | syl |  | 
						
							| 68 | 1 13 11 12 3 59 66 67 | ellspsni |  | 
						
							| 69 |  | simp1rr |  | 
						
							| 70 | 69 | 3ad2ant1 |  | 
						
							| 71 | 1 13 11 12 3 59 70 67 | ellspsni |  | 
						
							| 72 |  | simp13 |  | 
						
							| 73 |  | simp3 |  | 
						
							| 74 | 72 73 | eqtr3d |  | 
						
							| 75 | 2 51 52 54 55 57 62 63 64 68 71 74 | subgdisj2 |  | 
						
							| 76 | 53 7 | syl |  | 
						
							| 77 | 53 10 | syl |  | 
						
							| 78 | 1 3 4 5 51 59 76 67 77 | lshpne0 |  | 
						
							| 79 | 1 13 11 12 51 58 66 70 67 78 | lvecvscan2 |  | 
						
							| 80 | 75 79 | mpbid |  | 
						
							| 81 | 80 | rexlimdv3a |  | 
						
							| 82 | 81 | rexlimdv3a |  | 
						
							| 83 | 50 82 | biimtrid |  | 
						
							| 84 | 83 | impd |  | 
						
							| 85 | 84 | ralrimivva |  | 
						
							| 86 |  | oveq1 |  | 
						
							| 87 | 86 | oveq2d |  | 
						
							| 88 | 87 | eqeq2d |  | 
						
							| 89 | 88 | rexbidv |  | 
						
							| 90 | 89 | reu4 |  | 
						
							| 91 | 47 85 90 | sylanbrc |  | 
						
							| 92 |  | oveq1 |  | 
						
							| 93 | 92 | oveq2d |  | 
						
							| 94 | 93 | eqeq2d |  | 
						
							| 95 | 94 | rexbidv |  | 
						
							| 96 | 95 | cbvreuvw |  | 
						
							| 97 |  | oveq1 |  | 
						
							| 98 | 97 | eqeq2d |  | 
						
							| 99 | 98 | cbvrexvw |  | 
						
							| 100 | 99 | reubii |  | 
						
							| 101 | 96 100 | bitri |  | 
						
							| 102 | 91 101 | sylib |  |