| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcv.v |  | 
						
							| 2 |  | lsmcv.s |  | 
						
							| 3 |  | lsmcv.n |  | 
						
							| 4 |  | lsmcv.p |  | 
						
							| 5 |  | lsmcv.w |  | 
						
							| 6 |  | lsmcv.t |  | 
						
							| 7 |  | lsmcv.u |  | 
						
							| 8 |  | lsmcv.x |  | 
						
							| 9 |  | simp3 |  | 
						
							| 10 |  | simp2 |  | 
						
							| 11 |  | pssss |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | pssnel |  | 
						
							| 14 | 10 13 | syl |  | 
						
							| 15 |  | simpl3 |  | 
						
							| 16 |  | simprl |  | 
						
							| 17 | 15 16 | sseldd |  | 
						
							| 18 |  | lveclmod |  | 
						
							| 19 | 5 18 | syl |  | 
						
							| 20 | 2 | lsssssubg |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 21 6 | sseldd |  | 
						
							| 23 | 1 2 3 | lspsncl |  | 
						
							| 24 | 19 8 23 | syl2anc |  | 
						
							| 25 | 21 24 | sseldd |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 26 4 | lsmelval |  | 
						
							| 28 | 22 25 27 | syl2anc |  | 
						
							| 29 | 28 | 3ad2ant1 |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 17 30 | mpbid |  | 
						
							| 32 |  | simp1rr |  | 
						
							| 33 |  | simp2l |  | 
						
							| 34 |  | oveq2 |  | 
						
							| 35 | 34 | eqeq2d |  | 
						
							| 36 | 35 | biimpac |  | 
						
							| 37 | 19 | 3ad2ant1 |  | 
						
							| 38 | 37 | ad2antrr |  | 
						
							| 39 | 6 | 3ad2ant1 |  | 
						
							| 40 | 39 | ad2antrr |  | 
						
							| 41 |  | simprl |  | 
						
							| 42 | 1 2 | lssel |  | 
						
							| 43 | 40 41 42 | syl2anc |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 1 26 44 | lmod0vrid |  | 
						
							| 46 | 38 43 45 | syl2anc |  | 
						
							| 47 | 46 | eqeq2d |  | 
						
							| 48 | 47 | biimpd |  | 
						
							| 49 | 48 | ex |  | 
						
							| 50 | 36 49 | syl7 |  | 
						
							| 51 | 50 | exp4a |  | 
						
							| 52 | 51 | 3imp |  | 
						
							| 53 |  | eleq1 |  | 
						
							| 54 | 53 | biimparc |  | 
						
							| 55 | 33 52 54 | syl6an |  | 
						
							| 56 | 55 | necon3bd |  | 
						
							| 57 | 32 56 | mpd |  | 
						
							| 58 | 5 | 3ad2ant1 |  | 
						
							| 59 | 58 | adantr |  | 
						
							| 60 | 59 | 3ad2ant1 |  | 
						
							| 61 |  | lmodabl |  | 
						
							| 62 | 18 61 | syl |  | 
						
							| 63 | 60 62 | syl |  | 
						
							| 64 |  | simp1l1 |  | 
						
							| 65 | 64 6 | syl |  | 
						
							| 66 | 65 33 42 | syl2anc |  | 
						
							| 67 | 60 18 | syl |  | 
						
							| 68 | 64 8 | syl |  | 
						
							| 69 | 67 68 23 | syl2anc |  | 
						
							| 70 |  | simp2r |  | 
						
							| 71 | 1 2 | lssel |  | 
						
							| 72 | 69 70 71 | syl2anc |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 | 1 26 73 | ablpncan2 |  | 
						
							| 75 | 63 66 72 74 | syl3anc |  | 
						
							| 76 | 64 7 | syl |  | 
						
							| 77 |  | simp3 |  | 
						
							| 78 |  | simp1rl |  | 
						
							| 79 | 77 78 | eqeltrrd |  | 
						
							| 80 |  | simp1l2 |  | 
						
							| 81 | 11 | sselda |  | 
						
							| 82 | 80 33 81 | syl2anc |  | 
						
							| 83 | 73 2 | lssvsubcl |  | 
						
							| 84 | 67 76 79 82 83 | syl22anc |  | 
						
							| 85 | 75 84 | eqeltrrd |  | 
						
							| 86 | 60 | 3ad2ant1 |  | 
						
							| 87 | 64 | 3ad2ant1 |  | 
						
							| 88 | 87 8 | syl |  | 
						
							| 89 |  | simp12r |  | 
						
							| 90 |  | simp2 |  | 
						
							| 91 | 1 44 3 86 88 89 90 | lspsneleq |  | 
						
							| 92 | 86 18 | syl |  | 
						
							| 93 | 87 7 | syl |  | 
						
							| 94 |  | simp3 |  | 
						
							| 95 | 2 3 92 93 94 | ellspsn5 |  | 
						
							| 96 | 91 95 | eqsstrrd |  | 
						
							| 97 | 57 85 96 | mpd3an23 |  | 
						
							| 98 | 97 | 3exp |  | 
						
							| 99 | 98 | rexlimdvv |  | 
						
							| 100 | 31 99 | mpd |  | 
						
							| 101 | 14 100 | exlimddv |  | 
						
							| 102 | 21 7 | sseldd |  | 
						
							| 103 | 4 | lsmlub |  | 
						
							| 104 | 22 25 102 103 | syl3anc |  | 
						
							| 105 | 104 | 3ad2ant1 |  | 
						
							| 106 | 12 101 105 | mpbi2and |  | 
						
							| 107 | 9 106 | eqssd |  |