Metamath Proof Explorer


Theorem lsmdisj2

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙=LSSumG
lsmcntz.s φSSubGrpG
lsmcntz.t φTSubGrpG
lsmcntz.u φUSubGrpG
lsmdisj.o 0˙=0G
lsmdisj.i φS˙TU=0˙
lsmdisj2.i φST=0˙
Assertion lsmdisj2 φTS˙U=0˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙=LSSumG
2 lsmcntz.s φSSubGrpG
3 lsmcntz.t φTSubGrpG
4 lsmcntz.u φUSubGrpG
5 lsmdisj.o 0˙=0G
6 lsmdisj.i φS˙TU=0˙
7 lsmdisj2.i φST=0˙
8 eqid +G=+G
9 8 1 lsmelval SSubGrpGUSubGrpGxS˙UsSuUx=s+Gu
10 2 4 9 syl2anc φxS˙UsSuUx=s+Gu
11 simplrl φsSuUs+GuTsS
12 subgrcl SSubGrpGGGrp
13 2 12 syl φGGrp
14 13 ad2antrr φsSuUs+GuTGGrp
15 2 ad2antrr φsSuUs+GuTSSubGrpG
16 eqid BaseG=BaseG
17 16 subgss SSubGrpGSBaseG
18 15 17 syl φsSuUs+GuTSBaseG
19 18 11 sseldd φsSuUs+GuTsBaseG
20 eqid invgG=invgG
21 16 8 5 20 grplinv GGrpsBaseGinvgGs+Gs=0˙
22 14 19 21 syl2anc φsSuUs+GuTinvgGs+Gs=0˙
23 22 oveq1d φsSuUs+GuTinvgGs+Gs+Gu=0˙+Gu
24 20 subginvcl SSubGrpGsSinvgGsS
25 15 11 24 syl2anc φsSuUs+GuTinvgGsS
26 18 25 sseldd φsSuUs+GuTinvgGsBaseG
27 4 ad2antrr φsSuUs+GuTUSubGrpG
28 16 subgss USubGrpGUBaseG
29 27 28 syl φsSuUs+GuTUBaseG
30 simplrr φsSuUs+GuTuU
31 29 30 sseldd φsSuUs+GuTuBaseG
32 16 8 grpass GGrpinvgGsBaseGsBaseGuBaseGinvgGs+Gs+Gu=invgGs+Gs+Gu
33 14 26 19 31 32 syl13anc φsSuUs+GuTinvgGs+Gs+Gu=invgGs+Gs+Gu
34 16 8 5 grplid GGrpuBaseG0˙+Gu=u
35 14 31 34 syl2anc φsSuUs+GuT0˙+Gu=u
36 23 33 35 3eqtr3d φsSuUs+GuTinvgGs+Gs+Gu=u
37 3 ad2antrr φsSuUs+GuTTSubGrpG
38 simpr φsSuUs+GuTs+GuT
39 8 1 lsmelvali SSubGrpGTSubGrpGinvgGsSs+GuTinvgGs+Gs+GuS˙T
40 15 37 25 38 39 syl22anc φsSuUs+GuTinvgGs+Gs+GuS˙T
41 36 40 eqeltrrd φsSuUs+GuTuS˙T
42 41 30 elind φsSuUs+GuTuS˙TU
43 6 ad2antrr φsSuUs+GuTS˙TU=0˙
44 42 43 eleqtrd φsSuUs+GuTu0˙
45 elsni u0˙u=0˙
46 44 45 syl φsSuUs+GuTu=0˙
47 46 oveq2d φsSuUs+GuTs+Gu=s+G0˙
48 16 8 5 grprid GGrpsBaseGs+G0˙=s
49 14 19 48 syl2anc φsSuUs+GuTs+G0˙=s
50 47 49 eqtrd φsSuUs+GuTs+Gu=s
51 50 38 eqeltrrd φsSuUs+GuTsT
52 11 51 elind φsSuUs+GuTsST
53 7 ad2antrr φsSuUs+GuTST=0˙
54 52 53 eleqtrd φsSuUs+GuTs0˙
55 elsni s0˙s=0˙
56 54 55 syl φsSuUs+GuTs=0˙
57 56 46 oveq12d φsSuUs+GuTs+Gu=0˙+G0˙
58 16 5 grpidcl GGrp0˙BaseG
59 16 8 5 grplid GGrp0˙BaseG0˙+G0˙=0˙
60 13 58 59 syl2anc2 φ0˙+G0˙=0˙
61 60 ad2antrr φsSuUs+GuT0˙+G0˙=0˙
62 57 61 eqtrd φsSuUs+GuTs+Gu=0˙
63 62 ex φsSuUs+GuTs+Gu=0˙
64 eleq1 x=s+GuxTs+GuT
65 eqeq1 x=s+Gux=0˙s+Gu=0˙
66 64 65 imbi12d x=s+GuxTx=0˙s+GuTs+Gu=0˙
67 63 66 syl5ibrcom φsSuUx=s+GuxTx=0˙
68 67 rexlimdvva φsSuUx=s+GuxTx=0˙
69 10 68 sylbid φxS˙UxTx=0˙
70 69 impcomd φxTxS˙Ux=0˙
71 elin xTS˙UxTxS˙U
72 velsn x0˙x=0˙
73 70 71 72 3imtr4g φxTS˙Ux0˙
74 73 ssrdv φTS˙U0˙
75 5 subg0cl TSubGrpG0˙T
76 3 75 syl φ0˙T
77 1 lsmub1 SSubGrpGUSubGrpGSS˙U
78 2 4 77 syl2anc φSS˙U
79 5 subg0cl SSubGrpG0˙S
80 2 79 syl φ0˙S
81 78 80 sseldd φ0˙S˙U
82 76 81 elind φ0˙TS˙U
83 82 snssd φ0˙TS˙U
84 74 83 eqssd φTS˙U=0˙