| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p |  | 
						
							| 2 |  | lsmcntz.s |  | 
						
							| 3 |  | lsmcntz.t |  | 
						
							| 4 |  | lsmcntz.u |  | 
						
							| 5 |  | lsmdisj.o |  | 
						
							| 6 |  | lsmdisj.i |  | 
						
							| 7 |  | lsmdisj2.i |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 8 1 | lsmelval |  | 
						
							| 10 | 2 4 9 | syl2anc |  | 
						
							| 11 |  | simplrl |  | 
						
							| 12 |  | subgrcl |  | 
						
							| 13 | 2 12 | syl |  | 
						
							| 14 | 13 | ad2antrr |  | 
						
							| 15 | 2 | ad2antrr |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 16 | subgss |  | 
						
							| 18 | 15 17 | syl |  | 
						
							| 19 | 18 11 | sseldd |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 16 8 5 20 | grplinv |  | 
						
							| 22 | 14 19 21 | syl2anc |  | 
						
							| 23 | 22 | oveq1d |  | 
						
							| 24 | 20 | subginvcl |  | 
						
							| 25 | 15 11 24 | syl2anc |  | 
						
							| 26 | 18 25 | sseldd |  | 
						
							| 27 | 4 | ad2antrr |  | 
						
							| 28 | 16 | subgss |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 |  | simplrr |  | 
						
							| 31 | 29 30 | sseldd |  | 
						
							| 32 | 16 8 | grpass |  | 
						
							| 33 | 14 26 19 31 32 | syl13anc |  | 
						
							| 34 | 16 8 5 | grplid |  | 
						
							| 35 | 14 31 34 | syl2anc |  | 
						
							| 36 | 23 33 35 | 3eqtr3d |  | 
						
							| 37 | 3 | ad2antrr |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 | 8 1 | lsmelvali |  | 
						
							| 40 | 15 37 25 38 39 | syl22anc |  | 
						
							| 41 | 36 40 | eqeltrrd |  | 
						
							| 42 | 41 30 | elind |  | 
						
							| 43 | 6 | ad2antrr |  | 
						
							| 44 | 42 43 | eleqtrd |  | 
						
							| 45 |  | elsni |  | 
						
							| 46 | 44 45 | syl |  | 
						
							| 47 | 46 | oveq2d |  | 
						
							| 48 | 16 8 5 | grprid |  | 
						
							| 49 | 14 19 48 | syl2anc |  | 
						
							| 50 | 47 49 | eqtrd |  | 
						
							| 51 | 50 38 | eqeltrrd |  | 
						
							| 52 | 11 51 | elind |  | 
						
							| 53 | 7 | ad2antrr |  | 
						
							| 54 | 52 53 | eleqtrd |  | 
						
							| 55 |  | elsni |  | 
						
							| 56 | 54 55 | syl |  | 
						
							| 57 | 56 46 | oveq12d |  | 
						
							| 58 | 16 5 | grpidcl |  | 
						
							| 59 | 16 8 5 | grplid |  | 
						
							| 60 | 13 58 59 | syl2anc2 |  | 
						
							| 61 | 60 | ad2antrr |  | 
						
							| 62 | 57 61 | eqtrd |  | 
						
							| 63 | 62 | ex |  | 
						
							| 64 |  | eleq1 |  | 
						
							| 65 |  | eqeq1 |  | 
						
							| 66 | 64 65 | imbi12d |  | 
						
							| 67 | 63 66 | syl5ibrcom |  | 
						
							| 68 | 67 | rexlimdvva |  | 
						
							| 69 | 10 68 | sylbid |  | 
						
							| 70 | 69 | impcomd |  | 
						
							| 71 |  | elin |  | 
						
							| 72 |  | velsn |  | 
						
							| 73 | 70 71 72 | 3imtr4g |  | 
						
							| 74 | 73 | ssrdv |  | 
						
							| 75 | 5 | subg0cl |  | 
						
							| 76 | 3 75 | syl |  | 
						
							| 77 | 1 | lsmub1 |  | 
						
							| 78 | 2 4 77 | syl2anc |  | 
						
							| 79 | 5 | subg0cl |  | 
						
							| 80 | 2 79 | syl |  | 
						
							| 81 | 78 80 | sseldd |  | 
						
							| 82 | 76 81 | elind |  | 
						
							| 83 | 82 | snssd |  | 
						
							| 84 | 74 83 | eqssd |  |