Metamath Proof Explorer


Theorem madebday

Description: A surreal is part of the set made by ordinal A iff its birthday is less than or equal to A . Remark in Conway p. 29. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion madebday A On X No X M A bday X A

Proof

Step Hyp Ref Expression
1 madebdayim X M A bday X A
2 sseq2 a = b bday x a bday x b
3 fveq2 a = b M a = M b
4 3 eleq2d a = b x M a x M b
5 2 4 imbi12d a = b bday x a x M a bday x b x M b
6 5 ralbidv a = b x No bday x a x M a x No bday x b x M b
7 fveq2 x = y bday x = bday y
8 7 sseq1d x = y bday x b bday y b
9 eleq1 x = y x M b y M b
10 8 9 imbi12d x = y bday x b x M b bday y b y M b
11 10 cbvralvw x No bday x b x M b y No bday y b y M b
12 6 11 bitrdi a = b x No bday x a x M a y No bday y b y M b
13 sseq2 a = A bday x a bday x A
14 fveq2 a = A M a = M A
15 14 eleq2d a = A x M a x M A
16 13 15 imbi12d a = A bday x a x M a bday x A x M A
17 16 ralbidv a = A x No bday x a x M a x No bday x A x M A
18 bdayelon bday x On
19 onsseleq bday x On a On bday x a bday x a bday x = a
20 18 19 mpan a On bday x a bday x a bday x = a
21 20 ad2antrr a On b a y No bday y b y M b x No bday x a bday x a bday x = a
22 simpll a On b a y No bday y b y M b x No a On
23 onelss a On bday x a bday x a
24 23 ad2antrr a On b a y No bday y b y M b x No bday x a bday x a
25 24 imp a On b a y No bday y b y M b x No bday x a bday x a
26 madess a On bday x a M bday x M a
27 22 25 26 syl2an2r a On b a y No bday y b y M b x No bday x a M bday x M a
28 ssid bday x bday x
29 simpr a On b a y No bday y b y M b x No bday x a bday x a
30 simplr a On b a y No bday y b y M b x No bday x a x No
31 29 30 jca a On b a y No bday y b y M b x No bday x a bday x a x No
32 simpllr a On b a y No bday y b y M b x No bday x a b a y No bday y b y M b
33 sseq2 b = bday x bday y b bday y bday x
34 fveq2 b = bday x M b = M bday x
35 34 eleq2d b = bday x y M b y M bday x
36 33 35 imbi12d b = bday x bday y b y M b bday y bday x y M bday x
37 fveq2 y = x bday y = bday x
38 37 sseq1d y = x bday y bday x bday x bday x
39 eleq1 y = x y M bday x x M bday x
40 38 39 imbi12d y = x bday y bday x y M bday x bday x bday x x M bday x
41 36 40 rspc2v bday x a x No b a y No bday y b y M b bday x bday x x M bday x
42 31 32 41 sylc a On b a y No bday y b y M b x No bday x a bday x bday x x M bday x
43 28 42 mpi a On b a y No bday y b y M b x No bday x a x M bday x
44 27 43 sseldd a On b a y No bday y b y M b x No bday x a x M a
45 44 ex a On b a y No bday y b y M b x No bday x a x M a
46 madebdaylemlrcut b bday x y No bday y b y M b x No L x | s R x = x
47 18 a1i x No bday x On
48 lltropt x No L x s R x
49 leftssold L x Old bday x
50 49 a1i x No L x Old bday x
51 rightssold R x Old bday x
52 51 a1i x No R x Old bday x
53 madecut bday x On L x s R x L x Old bday x R x Old bday x L x | s R x M bday x
54 47 48 50 52 53 syl22anc x No L x | s R x M bday x
55 54 adantl b bday x y No bday y b y M b x No L x | s R x M bday x
56 46 55 eqeltrrd b bday x y No bday y b y M b x No x M bday x
57 raleq bday x = a b bday x y No bday y b y M b b a y No bday y b y M b
58 57 anbi1d bday x = a b bday x y No bday y b y M b x No b a y No bday y b y M b x No
59 fveq2 bday x = a M bday x = M a
60 59 eleq2d bday x = a x M bday x x M a
61 58 60 imbi12d bday x = a b bday x y No bday y b y M b x No x M bday x b a y No bday y b y M b x No x M a
62 56 61 mpbii bday x = a b a y No bday y b y M b x No x M a
63 62 com12 b a y No bday y b y M b x No bday x = a x M a
64 63 adantll a On b a y No bday y b y M b x No bday x = a x M a
65 45 64 jaod a On b a y No bday y b y M b x No bday x a bday x = a x M a
66 21 65 sylbid a On b a y No bday y b y M b x No bday x a x M a
67 66 ralrimiva a On b a y No bday y b y M b x No bday x a x M a
68 67 ex a On b a y No bday y b y M b x No bday x a x M a
69 12 17 68 tfis3 A On x No bday x A x M A
70 fveq2 x = X bday x = bday X
71 70 sseq1d x = X bday x A bday X A
72 eleq1 x = X x M A X M A
73 71 72 imbi12d x = X bday x A x M A bday X A X M A
74 73 rspccva x No bday x A x M A X No bday X A X M A
75 69 74 sylan A On X No bday X A X M A
76 1 75 impbid2 A On X No X M A bday X A