Metamath Proof Explorer


Theorem mapdh6aN

Description: Lemma for mapdh6N . Part (6) in Baer p. 47, case 1. (Contributed by NM, 23-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdh.p +˙=+U
mapdh.a ˙=+C
mapdhe6.y φYV0˙
mapdhe6.z φZV0˙
mapdhe6.xn φ¬XNYZ
mapdh6.yz φNYNZ
mapdh6.fg φIXFY=G
mapdh6.fe φIXFZ=E
Assertion mapdh6aN φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdh.p +˙=+U
19 mapdh.a ˙=+C
20 mapdhe6.y φYV0˙
21 mapdhe6.z φZV0˙
22 mapdhe6.xn φ¬XNYZ
23 mapdh6.yz φNYNZ
24 mapdh6.fg φIXFY=G
25 mapdh6.fe φIXFZ=E
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6lem2N φMNY+˙Z=JG˙E
27 24 25 oveq12d φIXFY˙IXFZ=G˙E
28 27 sneqd φIXFY˙IXFZ=G˙E
29 28 fveq2d φJIXFY˙IXFZ=JG˙E
30 26 29 eqtr4d φMNY+˙Z=JIXFY˙IXFZ
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6lem1N φMNX-˙Y+˙Z=JFRG˙E
32 27 oveq2d φFRIXFY˙IXFZ=FRG˙E
33 32 sneqd φFRIXFY˙IXFZ=FRG˙E
34 33 fveq2d φJFRIXFY˙IXFZ=JFRG˙E
35 31 34 eqtr4d φMNX-˙Y+˙Z=JFRIXFY˙IXFZ
36 3 5 14 dvhlmod φULMod
37 20 eldifad φYV
38 21 eldifad φZV
39 6 18 lmodvacl ULModYVZVY+˙ZV
40 36 37 38 39 syl3anc φY+˙ZV
41 6 18 8 9 36 37 38 23 lmodindp1 φY+˙Z0˙
42 eldifsn Y+˙ZV0˙Y+˙ZVY+˙Z0˙
43 40 41 42 sylanbrc φY+˙ZV0˙
44 3 10 14 lcdlmod φCLMod
45 3 5 14 dvhlvec φULVec
46 17 eldifad φXV
47 6 8 9 45 37 21 46 23 22 lspindp2 φNXNY¬ZNXY
48 47 simpld φNXNY
49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 37 48 mapdhcl φIXFYD
50 6 8 9 45 20 38 46 23 22 lspindp1 φNXNZ¬YNXZ
51 50 simpld φNXNZ
52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 38 51 mapdhcl φIXFZD
53 11 19 lmodvacl CLModIXFYDIXFZDIXFY˙IXFZD
54 44 49 52 53 syl3anc φIXFY˙IXFZD
55 eqid LSubSpU=LSubSpU
56 6 55 9 36 37 38 lspprcl φNYZLSubSpU
57 6 18 9 36 37 38 lspprvacl φY+˙ZNYZ
58 55 9 36 56 57 lspsnel5a φNY+˙ZNYZ
59 6 55 9 36 56 46 lspsnel5 φXNYZNXNYZ
60 22 59 mtbid φ¬NXNYZ
61 nssne2 NY+˙ZNYZ¬NXNYZNY+˙ZNX
62 58 60 61 syl2anc φNY+˙ZNX
63 62 necomd φNXNY+˙Z
64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 43 54 63 mapdheq φIXFY+˙Z=IXFY˙IXFZMNY+˙Z=JIXFY˙IXFZMNX-˙Y+˙Z=JFRIXFY˙IXFZ
65 30 35 64 mpbir2and φIXFY+˙Z=IXFY˙IXFZ