Metamath Proof Explorer


Theorem mat1mhm

Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K=BaseR
mat1rhmval.a A=EMatR
mat1rhmval.b B=BaseA
mat1rhmval.o O=EE
mat1rhmval.f F=xKOx
mat1mhm.m M=mulGrpR
mat1mhm.n N=mulGrpA
Assertion mat1mhm RRingEVFMMndHomN

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K=BaseR
2 mat1rhmval.a A=EMatR
3 mat1rhmval.b B=BaseA
4 mat1rhmval.o O=EE
5 mat1rhmval.f F=xKOx
6 mat1mhm.m M=mulGrpR
7 mat1mhm.n N=mulGrpA
8 6 ringmgp RRingMMnd
9 8 adantr RRingEVMMnd
10 snfi EFin
11 simpl RRingEVRRing
12 2 matring EFinRRingARing
13 10 11 12 sylancr RRingEVARing
14 7 ringmgp ARingNMnd
15 13 14 syl RRingEVNMnd
16 1 2 3 4 5 mat1f RRingEVF:KB
17 ringmnd RRingRMnd
18 17 adantr RRingEVRMnd
19 18 adantr RRingEVwKyKRMnd
20 simpr RRingEVEV
21 20 adantr RRingEVwKyKEV
22 simpll RRingEVwKyKRRing
23 eqid BaseA=BaseA
24 snidg EVEE
25 24 ad2antlr RRingEVwKyKEE
26 simprl RRingEVwKyKwK
27 1 2 23 4 5 mat1rhmcl RRingEVwKFwBaseA
28 22 21 26 27 syl3anc RRingEVwKyKFwBaseA
29 2 1 23 25 25 28 matecld RRingEVwKyKEFwEK
30 simprr RRingEVwKyKyK
31 1 2 23 4 5 mat1rhmcl RRingEVyKFyBaseA
32 22 21 30 31 syl3anc RRingEVwKyKFyBaseA
33 2 1 23 25 25 32 matecld RRingEVwKyKEFyEK
34 eqid R=R
35 1 34 ringcl RRingEFwEKEFyEKEFwEREFyEK
36 22 29 33 35 syl3anc RRingEVwKyKEFwEREFyEK
37 oveq2 e=EEFwe=EFwE
38 oveq1 e=EeFyE=EFyE
39 37 38 oveq12d e=EEFweReFyE=EFwEREFyE
40 39 adantl RRingEVwKyKe=EEFweReFyE=EFwEREFyE
41 1 19 21 36 40 gsumsnd RRingEVwKyKReEEFweReFyE=EFwEREFyE
42 1 2 3 4 5 mat1rhmelval RRingEVwKEFwE=w
43 22 21 26 42 syl3anc RRingEVwKyKEFwE=w
44 1 2 3 4 5 mat1rhmelval RRingEVyKEFyE=y
45 22 21 30 44 syl3anc RRingEVwKyKEFyE=y
46 43 45 oveq12d RRingEVwKyKEFwEREFyE=wRy
47 41 46 eqtrd RRingEVwKyKReEEFweReFyE=wRy
48 1 2 3 4 5 mat1rhmcl RRingEVwKFwB
49 22 21 26 48 syl3anc RRingEVwKyKFwB
50 1 2 3 4 5 mat1rhmcl RRingEVyKFyB
51 22 21 30 50 syl3anc RRingEVwKyKFyB
52 49 51 jca RRingEVwKyKFwBFyB
53 24 24 jca EVEEEE
54 53 ad2antlr RRingEVwKyKEEEE
55 eqid A=A
56 2 3 55 matmulcell RRingFwBFyBEEEEEFwAFyE=ReEEFweReFyE
57 22 52 54 56 syl3anc RRingEVwKyKEFwAFyE=ReEEFweReFyE
58 1 34 ringcl RRingwKyKwRyK
59 22 26 30 58 syl3anc RRingEVwKyKwRyK
60 1 2 3 4 5 mat1rhmelval RRingEVwRyKEFwRyE=wRy
61 22 21 59 60 syl3anc RRingEVwKyKEFwRyE=wRy
62 47 57 61 3eqtr4rd RRingEVwKyKEFwRyE=EFwAFyE
63 oveq1 i=EiFwRyj=EFwRyj
64 oveq1 i=EiFwAFyj=EFwAFyj
65 63 64 eqeq12d i=EiFwRyj=iFwAFyjEFwRyj=EFwAFyj
66 oveq2 j=EEFwRyj=EFwRyE
67 oveq2 j=EEFwAFyj=EFwAFyE
68 66 67 eqeq12d j=EEFwRyj=EFwAFyjEFwRyE=EFwAFyE
69 65 68 2ralsng EVEViEjEiFwRyj=iFwAFyjEFwRyE=EFwAFyE
70 20 69 sylancom RRingEViEjEiFwRyj=iFwAFyjEFwRyE=EFwAFyE
71 70 adantr RRingEVwKyKiEjEiFwRyj=iFwAFyjEFwRyE=EFwAFyE
72 62 71 mpbird RRingEVwKyKiEjEiFwRyj=iFwAFyj
73 1 2 3 4 5 mat1rhmcl RRingEVwRyKFwRyB
74 22 21 59 73 syl3anc RRingEVwKyKFwRyB
75 13 adantr RRingEVwKyKARing
76 3 55 ringcl ARingFwBFyBFwAFyB
77 75 49 51 76 syl3anc RRingEVwKyKFwAFyB
78 2 3 eqmat FwRyBFwAFyBFwRy=FwAFyiEjEiFwRyj=iFwAFyj
79 74 77 78 syl2anc RRingEVwKyKFwRy=FwAFyiEjEiFwRyj=iFwAFyj
80 72 79 mpbird RRingEVwKyKFwRy=FwAFy
81 80 ralrimivva RRingEVwKyKFwRy=FwAFy
82 eqid 1R=1R
83 1 82 ringidcl RRing1RK
84 83 adantr RRingEV1RK
85 1 2 3 4 5 mat1rhmval RRingEV1RKF1R=O1R
86 84 85 mpd3an3 RRingEVF1R=O1R
87 2 1 4 mat1dimid RRingEV1A=O1R
88 86 87 eqtr4d RRingEVF1R=1A
89 16 81 88 3jca RRingEVF:KBwKyKFwRy=FwAFyF1R=1A
90 6 1 mgpbas K=BaseM
91 7 3 mgpbas B=BaseN
92 6 34 mgpplusg R=+M
93 7 55 mgpplusg A=+N
94 6 82 ringidval 1R=0M
95 eqid 1A=1A
96 7 95 ringidval 1A=0N
97 90 91 92 93 94 96 ismhm FMMndHomNMMndNMndF:KBwKyKFwRy=FwAFyF1R=1A
98 9 15 89 97 syl21anbrc RRingEVFMMndHomN