Metamath Proof Explorer


Theorem mat2pmatlin

Description: The transformation of matrices into polynomial matrices is "linear", analogous to lmhmlin . Since A and C have different scalar rings, T cannot be a left module homomorphism as defined in df-lmhm , see lmhmsca . (Contributed by AV, 13-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses mat2pmatbas.t T=NmatToPolyMatR
mat2pmatbas.a A=NMatR
mat2pmatbas.b B=BaseA
mat2pmatbas.p P=Poly1R
mat2pmatbas.c C=NMatP
mat2pmatbas0.h H=BaseC
mat2pmatlin.k K=BaseR
mat2pmatlin.s S=algScP
mat2pmatlin.m ·˙=A
mat2pmatlin.n ×˙=C
Assertion mat2pmatlin NFinRCRingXKYBTX·˙Y=SX×˙TY

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T=NmatToPolyMatR
2 mat2pmatbas.a A=NMatR
3 mat2pmatbas.b B=BaseA
4 mat2pmatbas.p P=Poly1R
5 mat2pmatbas.c C=NMatP
6 mat2pmatbas0.h H=BaseC
7 mat2pmatlin.k K=BaseR
8 mat2pmatlin.s S=algScP
9 mat2pmatlin.m ·˙=A
10 mat2pmatlin.n ×˙=C
11 simpr NFinRCRingRCRing
12 4 ply1assa RCRingPAssAlg
13 eqid ScalarP=ScalarP
14 8 13 asclrhm PAssAlgSScalarPRingHomP
15 11 12 14 3syl NFinRCRingSScalarPRingHomP
16 4 ply1sca RCRingR=ScalarP
17 16 adantl NFinRCRingR=ScalarP
18 17 oveq1d NFinRCRingRRingHomP=ScalarPRingHomP
19 15 18 eleqtrrd NFinRCRingSRRingHomP
20 19 adantr NFinRCRingXKYBSRRingHomP
21 20 adantr NFinRCRingXKYBiNjNSRRingHomP
22 7 eleq2i XKXBaseR
23 22 biimpi XKXBaseR
24 23 adantr XKYBXBaseR
25 24 ad2antlr NFinRCRingXKYBiNjNXBaseR
26 eqid BaseR=BaseR
27 simprl NFinRCRingXKYBiNjNiN
28 simpr iNjNjN
29 28 adantl NFinRCRingXKYBiNjNjN
30 simplrr NFinRCRingXKYBiNjNYB
31 2 26 3 27 29 30 matecld NFinRCRingXKYBiNjNiYjBaseR
32 eqid R=R
33 eqid P=P
34 26 32 33 rhmmul SRRingHomPXBaseRiYjBaseRSXRiYj=SXPSiYj
35 21 25 31 34 syl3anc NFinRCRingXKYBiNjNSXRiYj=SXPSiYj
36 crngring RCRingRRing
37 36 ad2antlr NFinRCRingXKYBRRing
38 37 adantr NFinRCRingXKYBiNjNRRing
39 simpr NFinRCRingXKYBXKYB
40 39 adantr NFinRCRingXKYBiNjNXKYB
41 simpr NFinRCRingXKYBiNjNiNjN
42 2 3 7 9 32 matvscacell RRingXKYBiNjNiX·˙Yj=XRiYj
43 38 40 41 42 syl3anc NFinRCRingXKYBiNjNiX·˙Yj=XRiYj
44 43 fveq2d NFinRCRingXKYBiNjNSiX·˙Yj=SXRiYj
45 36 anim2i NFinRCRingNFinRRing
46 simpr XKYBYB
47 45 46 anim12i NFinRCRingXKYBNFinRRingYB
48 df-3an NFinRRingYBNFinRRingYB
49 47 48 sylibr NFinRCRingXKYBNFinRRingYB
50 1 2 3 4 8 mat2pmatvalel NFinRRingYBiNjNiTYj=SiYj
51 49 50 sylan NFinRCRingXKYBiNjNiTYj=SiYj
52 51 oveq2d NFinRCRingXKYBiNjNSXPiTYj=SXPSiYj
53 35 44 52 3eqtr4d NFinRCRingXKYBiNjNSiX·˙Yj=SXPiTYj
54 simpll NFinRCRingXKYBNFin
55 54 adantr NFinRCRingXKYBiNjNNFin
56 7 2 3 9 matvscl NFinRRingXKYBX·˙YB
57 45 56 sylan NFinRCRingXKYBX·˙YB
58 57 adantr NFinRCRingXKYBiNjNX·˙YB
59 1 2 3 4 8 mat2pmatvalel NFinRRingX·˙YBiNjNiTX·˙Yj=SiX·˙Yj
60 55 38 58 41 59 syl31anc NFinRCRingXKYBiNjNiTX·˙Yj=SiX·˙Yj
61 4 ply1ring RRingPRing
62 36 61 syl RCRingPRing
63 62 ad2antlr NFinRCRingXKYBPRing
64 63 adantr NFinRCRingXKYBiNjNPRing
65 36 adantl NFinRCRingRRing
66 simpl XKYBXK
67 eqid BaseP=BaseP
68 4 8 7 67 ply1sclcl RRingXKSXBaseP
69 65 66 68 syl2an NFinRCRingXKYBSXBaseP
70 1 2 3 4 5 6 mat2pmatbas0 NFinRRingYBTYH
71 49 70 syl NFinRCRingXKYBTYH
72 69 71 jca NFinRCRingXKYBSXBasePTYH
73 72 adantr NFinRCRingXKYBiNjNSXBasePTYH
74 5 6 67 10 33 matvscacell PRingSXBasePTYHiNjNiSX×˙TYj=SXPiTYj
75 64 73 41 74 syl3anc NFinRCRingXKYBiNjNiSX×˙TYj=SXPiTYj
76 53 60 75 3eqtr4d NFinRCRingXKYBiNjNiTX·˙Yj=iSX×˙TYj
77 76 ralrimivva NFinRCRingXKYBiNjNiTX·˙Yj=iSX×˙TYj
78 1 2 3 4 5 6 mat2pmatbas0 NFinRRingX·˙YBTX·˙YH
79 54 37 57 78 syl3anc NFinRCRingXKYBTX·˙YH
80 67 5 6 10 matvscl NFinPRingSXBasePTYHSX×˙TYH
81 54 63 72 80 syl21anc NFinRCRingXKYBSX×˙TYH
82 5 6 eqmat TX·˙YHSX×˙TYHTX·˙Y=SX×˙TYiNjNiTX·˙Yj=iSX×˙TYj
83 79 81 82 syl2anc NFinRCRingXKYBTX·˙Y=SX×˙TYiNjNiTX·˙Yj=iSX×˙TYj
84 77 83 mpbird NFinRCRingXKYBTX·˙Y=SX×˙TY