Metamath Proof Explorer


Theorem mdetdiag

Description: The determinant of a diagonal matrix is the product of the entries in the diagonal. (Contributed by AV, 17-Aug-2019)

Ref Expression
Hypotheses mdetdiag.d D=NmaDetR
mdetdiag.a A=NMatR
mdetdiag.b B=BaseA
mdetdiag.g G=mulGrpR
mdetdiag.0 0˙=0R
Assertion mdetdiag RCRingNFinMBiNjNijiMj=0˙DM=GkNkMk

Proof

Step Hyp Ref Expression
1 mdetdiag.d D=NmaDetR
2 mdetdiag.a A=NMatR
3 mdetdiag.b B=BaseA
4 mdetdiag.g G=mulGrpR
5 mdetdiag.0 0˙=0R
6 simpl3 RCRingNFinMBiNjNijiMj=0˙MB
7 eqid BaseSymGrpN=BaseSymGrpN
8 eqid ℤRHomR=ℤRHomR
9 eqid pmSgnN=pmSgnN
10 eqid R=R
11 1 2 3 7 8 9 10 4 mdetleib MBDM=RpBaseSymGrpNℤRHomRpmSgnNpRGkNpkMk
12 6 11 syl RCRingNFinMBiNjNijiMj=0˙DM=RpBaseSymGrpNℤRHomRpmSgnNpRGkNpkMk
13 simpl1 RCRingNFinMBiNjNijiMj=0˙RCRing
14 13 ad2antrr RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNp=INRCRing
15 6 ad2antrr RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNp=INMB
16 simpr RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNp=INp=IN
17 2 3 4 8 9 10 madetsumid RCRingMBp=INℤRHomRpmSgnNpRGkNpkMk=GkNkMk
18 14 15 16 17 syl3anc RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNp=INℤRHomRpmSgnNpRGkNpkMk=GkNkMk
19 iftrue p=INifp=INGkNkMk0˙=GkNkMk
20 19 eqcomd p=INGkNkMk=ifp=INGkNkMk0˙
21 20 adantl RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNp=INGkNkMk=ifp=INGkNkMk0˙
22 18 21 eqtrd RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNp=INℤRHomRpmSgnNpRGkNpkMk=ifp=INGkNkMk0˙
23 simplll RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpN¬p=INRCRingNFinMB
24 simpr RCRingNFinMBiNjNijiMj=0˙iNjNijiMj=0˙
25 24 ad2antrr RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpN¬p=INiNjNijiMj=0˙
26 simpr RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNpBaseSymGrpN
27 neqne ¬p=INpIN
28 26 27 anim12i RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpN¬p=INpBaseSymGrpNpIN
29 1 2 3 4 5 7 8 9 10 mdetdiaglem RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNpINℤRHomRpmSgnNpRGkNpkMk=0˙
30 23 25 28 29 syl3anc RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpN¬p=INℤRHomRpmSgnNpRGkNpkMk=0˙
31 iffalse ¬p=INifp=INGkNkMk0˙=0˙
32 31 adantl RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpN¬p=INifp=INGkNkMk0˙=0˙
33 32 eqcomd RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpN¬p=IN0˙=ifp=INGkNkMk0˙
34 30 33 eqtrd RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpN¬p=INℤRHomRpmSgnNpRGkNpkMk=ifp=INGkNkMk0˙
35 22 34 pm2.61dan RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNℤRHomRpmSgnNpRGkNpkMk=ifp=INGkNkMk0˙
36 35 mpteq2dva RCRingNFinMBiNjNijiMj=0˙pBaseSymGrpNℤRHomRpmSgnNpRGkNpkMk=pBaseSymGrpNifp=INGkNkMk0˙
37 36 oveq2d RCRingNFinMBiNjNijiMj=0˙RpBaseSymGrpNℤRHomRpmSgnNpRGkNpkMk=RpBaseSymGrpNifp=INGkNkMk0˙
38 crngring RCRingRRing
39 ringmnd RRingRMnd
40 38 39 syl RCRingRMnd
41 40 3ad2ant1 RCRingNFinMBRMnd
42 41 adantr RCRingNFinMBiNjNijiMj=0˙RMnd
43 fvexd RCRingNFinMBiNjNijiMj=0˙BaseSymGrpNV
44 eqid SymGrpN=SymGrpN
45 44 symgid NFinIN=0SymGrpN
46 45 3ad2ant2 RCRingNFinMBIN=0SymGrpN
47 44 symggrp NFinSymGrpNGrp
48 47 3ad2ant2 RCRingNFinMBSymGrpNGrp
49 eqid 0SymGrpN=0SymGrpN
50 7 49 grpidcl SymGrpNGrp0SymGrpNBaseSymGrpN
51 48 50 syl RCRingNFinMB0SymGrpNBaseSymGrpN
52 46 51 eqeltrd RCRingNFinMBINBaseSymGrpN
53 52 adantr RCRingNFinMBiNjNijiMj=0˙INBaseSymGrpN
54 eqid pBaseSymGrpNifp=INGkNkMk0˙=pBaseSymGrpNifp=INGkNkMk0˙
55 eqid BaseR=BaseR
56 4 55 mgpbas BaseR=BaseG
57 4 crngmgp RCRingGCMnd
58 57 3ad2ant1 RCRingNFinMBGCMnd
59 58 adantr RCRingNFinMBiNjNijiMj=0˙GCMnd
60 simpl2 RCRingNFinMBiNjNijiMj=0˙NFin
61 simpr RCRingNFinMBiNjNijiMj=0˙kNkN
62 3 eleq2i MBMBaseA
63 62 biimpi MBMBaseA
64 63 3ad2ant3 RCRingNFinMBMBaseA
65 64 ad2antrr RCRingNFinMBiNjNijiMj=0˙kNMBaseA
66 2 55 matecl kNkNMBaseAkMkBaseR
67 61 61 65 66 syl3anc RCRingNFinMBiNjNijiMj=0˙kNkMkBaseR
68 67 ralrimiva RCRingNFinMBiNjNijiMj=0˙kNkMkBaseR
69 56 59 60 68 gsummptcl RCRingNFinMBiNjNijiMj=0˙GkNkMkBaseR
70 5 42 43 53 54 69 gsummptif1n0 RCRingNFinMBiNjNijiMj=0˙RpBaseSymGrpNifp=INGkNkMk0˙=GkNkMk
71 12 37 70 3eqtrd RCRingNFinMBiNjNijiMj=0˙DM=GkNkMk
72 71 ex RCRingNFinMBiNjNijiMj=0˙DM=GkNkMk