Metamath Proof Explorer


Theorem measdivcstALTV

Description: Alternate version of measdivcst . (Contributed by Thierry Arnoux, 25-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion measdivcstALTV M measures S A + x S M x ÷ 𝑒 A measures S

Proof

Step Hyp Ref Expression
1 funmpt Fun x S M x ÷ 𝑒 A
2 ovex M x ÷ 𝑒 A V
3 2 rgenw x S M x ÷ 𝑒 A V
4 dmmptg x S M x ÷ 𝑒 A V dom x S M x ÷ 𝑒 A = S
5 3 4 ax-mp dom x S M x ÷ 𝑒 A = S
6 df-fn x S M x ÷ 𝑒 A Fn S Fun x S M x ÷ 𝑒 A dom x S M x ÷ 𝑒 A = S
7 1 5 6 mpbir2an x S M x ÷ 𝑒 A Fn S
8 7 a1i M measures S A + x S M x ÷ 𝑒 A Fn S
9 vex y V
10 eqid x S M x ÷ 𝑒 A = x S M x ÷ 𝑒 A
11 10 elrnmpt y V y ran x S M x ÷ 𝑒 A x S y = M x ÷ 𝑒 A
12 9 11 ax-mp y ran x S M x ÷ 𝑒 A x S y = M x ÷ 𝑒 A
13 measfrge0 M measures S M : S 0 +∞
14 ffvelrn M : S 0 +∞ x S M x 0 +∞
15 13 14 sylan M measures S x S M x 0 +∞
16 15 adantlr M measures S A + x S M x 0 +∞
17 simplr M measures S A + x S A +
18 16 17 xrpxdivcld M measures S A + x S M x ÷ 𝑒 A 0 +∞
19 eleq1a M x ÷ 𝑒 A 0 +∞ y = M x ÷ 𝑒 A y 0 +∞
20 18 19 syl M measures S A + x S y = M x ÷ 𝑒 A y 0 +∞
21 20 rexlimdva M measures S A + x S y = M x ÷ 𝑒 A y 0 +∞
22 12 21 syl5bi M measures S A + y ran x S M x ÷ 𝑒 A y 0 +∞
23 22 ssrdv M measures S A + ran x S M x ÷ 𝑒 A 0 +∞
24 df-f x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A Fn S ran x S M x ÷ 𝑒 A 0 +∞
25 8 23 24 sylanbrc M measures S A + x S M x ÷ 𝑒 A : S 0 +∞
26 measbase M measures S S ran sigAlgebra
27 0elsiga S ran sigAlgebra S
28 26 27 syl M measures S S
29 28 adantr M measures S A + S
30 ovex M ÷ 𝑒 A V
31 29 30 jctir M measures S A + S M ÷ 𝑒 A V
32 fveq2 x = M x = M
33 32 oveq1d x = M x ÷ 𝑒 A = M ÷ 𝑒 A
34 33 10 fvmptg S M ÷ 𝑒 A V x S M x ÷ 𝑒 A = M ÷ 𝑒 A
35 31 34 syl M measures S A + x S M x ÷ 𝑒 A = M ÷ 𝑒 A
36 measvnul M measures S M = 0
37 36 oveq1d M measures S M ÷ 𝑒 A = 0 ÷ 𝑒 A
38 xdiv0rp A + 0 ÷ 𝑒 A = 0
39 37 38 sylan9eq M measures S A + M ÷ 𝑒 A = 0
40 35 39 eqtrd M measures S A + x S M x ÷ 𝑒 A = 0
41 simpll M measures S A + y 𝒫 S y ω Disj z y z M measures S A +
42 simplr M measures S A + y 𝒫 S y ω Disj z y z y 𝒫 S
43 simprl M measures S A + y 𝒫 S y ω Disj z y z y ω
44 simprr M measures S A + y 𝒫 S y ω Disj z y z Disj z y z
45 42 43 44 3jca M measures S A + y 𝒫 S y ω Disj z y z y 𝒫 S y ω Disj z y z
46 9 a1i M measures S A + y 𝒫 S y V
47 simplll M measures S A + y 𝒫 S z y M measures S
48 simplr M measures S A + y 𝒫 S z y y 𝒫 S
49 simpr M measures S A + y 𝒫 S z y z y
50 elpwg y V y 𝒫 S y S
51 9 50 ax-mp y 𝒫 S y S
52 ssel2 y S z y z S
53 51 52 sylanb y 𝒫 S z y z S
54 48 49 53 syl2anc M measures S A + y 𝒫 S z y z S
55 measvxrge0 M measures S z S M z 0 +∞
56 47 54 55 syl2anc M measures S A + y 𝒫 S z y M z 0 +∞
57 simplr M measures S A + y 𝒫 S A +
58 46 56 57 esumdivc M measures S A + y 𝒫 S * z y M z ÷ 𝑒 A = * z y M z ÷ 𝑒 A
59 58 3ad2antr1 M measures S A + y 𝒫 S y ω Disj z y z * z y M z ÷ 𝑒 A = * z y M z ÷ 𝑒 A
60 26 ad2antrr M measures S A + y 𝒫 S y ω Disj z y z S ran sigAlgebra
61 simpr1 M measures S A + y 𝒫 S y ω Disj z y z y 𝒫 S
62 simpr2 M measures S A + y 𝒫 S y ω Disj z y z y ω
63 sigaclcu S ran sigAlgebra y 𝒫 S y ω y S
64 60 61 62 63 syl3anc M measures S A + y 𝒫 S y ω Disj z y z y S
65 fveq2 x = y M x = M y
66 65 oveq1d x = y M x ÷ 𝑒 A = M y ÷ 𝑒 A
67 66 10 2 fvmpt3i y S x S M x ÷ 𝑒 A y = M y ÷ 𝑒 A
68 64 67 syl M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = M y ÷ 𝑒 A
69 simpll M measures S A + y 𝒫 S y ω Disj z y z M measures S
70 69 61 jca M measures S A + y 𝒫 S y ω Disj z y z M measures S y 𝒫 S
71 simpr3 M measures S A + y 𝒫 S y ω Disj z y z Disj z y z
72 62 71 jca M measures S A + y 𝒫 S y ω Disj z y z y ω Disj z y z
73 measvun M measures S y 𝒫 S y ω Disj z y z M y = * z y M z
74 73 3expia M measures S y 𝒫 S y ω Disj z y z M y = * z y M z
75 74 ralrimiva M measures S y 𝒫 S y ω Disj z y z M y = * z y M z
76 75 r19.21bi M measures S y 𝒫 S y ω Disj z y z M y = * z y M z
77 70 72 76 sylc M measures S A + y 𝒫 S y ω Disj z y z M y = * z y M z
78 77 oveq1d M measures S A + y 𝒫 S y ω Disj z y z M y ÷ 𝑒 A = * z y M z ÷ 𝑒 A
79 68 78 eqtrd M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y M z ÷ 𝑒 A
80 fveq2 x = z M x = M z
81 80 oveq1d x = z M x ÷ 𝑒 A = M z ÷ 𝑒 A
82 81 10 2 fvmpt3i z S x S M x ÷ 𝑒 A z = M z ÷ 𝑒 A
83 53 82 syl y 𝒫 S z y x S M x ÷ 𝑒 A z = M z ÷ 𝑒 A
84 83 esumeq2dv y 𝒫 S * z y x S M x ÷ 𝑒 A z = * z y M z ÷ 𝑒 A
85 61 84 syl M measures S A + y 𝒫 S y ω Disj z y z * z y x S M x ÷ 𝑒 A z = * z y M z ÷ 𝑒 A
86 59 79 85 3eqtr4d M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
87 41 45 86 syl2anc M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
88 87 ex M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
89 88 ralrimiva M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
90 25 40 89 3jca M measures S A + x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A = 0 y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
91 ismeas S ran sigAlgebra x S M x ÷ 𝑒 A measures S x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A = 0 y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
92 26 91 syl M measures S x S M x ÷ 𝑒 A measures S x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A = 0 y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
93 92 biimprd M measures S x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A = 0 y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z x S M x ÷ 𝑒 A measures S
94 93 adantr M measures S A + x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A = 0 y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z x S M x ÷ 𝑒 A measures S
95 90 94 mpd M measures S A + x S M x ÷ 𝑒 A measures S