Metamath Proof Explorer


Theorem metakunt20

Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt20.1 φM
metakunt20.2 φI
metakunt20.3 φIM
metakunt20.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
metakunt20.5 C=x1I1x+M-I
metakunt20.6 D=xIM1x+1-I
metakunt20.7 φX1M
metakunt20.8 φX=M
Assertion metakunt20 φBX=CDMMX

Proof

Step Hyp Ref Expression
1 metakunt20.1 φM
2 metakunt20.2 φI
3 metakunt20.3 φIM
4 metakunt20.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
5 metakunt20.5 C=x1I1x+M-I
6 metakunt20.6 D=xIM1x+1-I
7 metakunt20.7 φX1M
8 metakunt20.8 φX=M
9 4 a1i φB=x1Mifx=MMifx<Ix+M-Ix+1-I
10 eqeq1 x=Xx=MX=M
11 breq1 x=Xx<IX<I
12 oveq1 x=Xx+M-I=X+M-I
13 oveq1 x=Xx+1-I=X+1-I
14 11 12 13 ifbieq12d x=Xifx<Ix+M-Ix+1-I=ifX<IX+M-IX+1-I
15 10 14 ifbieq2d x=Xifx=MMifx<Ix+M-Ix+1-I=ifX=MMifX<IX+M-IX+1-I
16 15 adantl φx=Xifx=MMifx<Ix+M-Ix+1-I=ifX=MMifX<IX+M-IX+1-I
17 iftrue X=MifX=MMifX<IX+M-IX+1-I=M
18 8 17 syl φifX=MMifX<IX+M-IX+1-I=M
19 18 adantr φx=XifX=MMifX<IX+M-IX+1-I=M
20 8 eqcomd φM=X
21 20 adantr φx=XM=X
22 19 21 eqtrd φx=XifX=MMifX<IX+M-IX+1-I=X
23 16 22 eqtrd φx=Xifx=MMifx<Ix+M-Ix+1-I=X
24 9 23 7 7 fvmptd φBX=X
25 8 fveq2d φMMX=MMM
26 fvsng MMMMM=M
27 1 1 26 syl2anc φMMM=M
28 25 27 eqtrd φMMX=M
29 28 eqcomd φM=MMX
30 24 8 29 3eqtrd φBX=MMX
31 1 2 3 4 5 6 metakunt19 φCFn1I1DFnIM1CDFn1I1IM1MMFnM
32 31 simpld φCFn1I1DFnIM1CDFn1I1IM1
33 32 simp3d φCDFn1I1IM1
34 31 simprd φMMFnM
35 1 nnzd φM
36 fzsn MMM=M
37 35 36 syl φMM=M
38 37 ineq2d φ1I1IM1MM=1I1IM1M
39 38 eqcomd φ1I1IM1M=1I1IM1MM
40 2 nncnd φI
41 1 nncnd φM
42 40 41 pncan3d φI+M-I=M
43 42 oveq2d φ1..^I+M-I=1..^M
44 fzoval M1..^M=1M1
45 35 44 syl φ1..^M=1M1
46 43 45 eqtrd φ1..^I+M-I=1M1
47 46 eqcomd φ1M1=1..^I+M-I
48 nnuz =1
49 2 48 eleqtrdi φI1
50 2 nnzd φI
51 50 35 jca φIM
52 znn0sub IMIMMI0
53 51 52 syl φIMMI0
54 3 53 mpbid φMI0
55 fzoun I1MI01..^I+M-I=1..^II..^I+M-I
56 49 54 55 syl2anc φ1..^I+M-I=1..^II..^I+M-I
57 47 56 eqtrd φ1M1=1..^II..^I+M-I
58 fzoval I1..^I=1I1
59 50 58 syl φ1..^I=1I1
60 42 oveq2d φI..^I+M-I=I..^M
61 fzoval MI..^M=IM1
62 35 61 syl φI..^M=IM1
63 60 62 eqtrd φI..^I+M-I=IM1
64 59 63 uneq12d φ1..^II..^I+M-I=1I1IM1
65 57 64 eqtrd φ1M1=1I1IM1
66 65 ineq1d φ1M1MM=1I1IM1MM
67 66 eqcomd φ1I1IM1MM=1M1MM
68 1 nnred φM
69 68 ltm1d φM1<M
70 fzdisj M1<M1M1MM=
71 69 70 syl φ1M1MM=
72 67 71 eqtrd φ1I1IM1MM=
73 39 72 eqtrd φ1I1IM1M=
74 elsng X1MXMX=M
75 7 74 syl φXMX=M
76 8 75 mpbird φXM
77 33 34 73 76 fvun2d φCDMMX=MMX
78 77 eqcomd φMMX=CDMMX
79 30 78 eqtrd φBX=CDMMX