| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metakunt20.1 |
|
| 2 |
|
metakunt20.2 |
|
| 3 |
|
metakunt20.3 |
|
| 4 |
|
metakunt20.4 |
|
| 5 |
|
metakunt20.5 |
|
| 6 |
|
metakunt20.6 |
|
| 7 |
|
metakunt20.7 |
|
| 8 |
|
metakunt20.8 |
|
| 9 |
4
|
a1i |
|
| 10 |
|
eqeq1 |
|
| 11 |
|
breq1 |
|
| 12 |
|
oveq1 |
|
| 13 |
|
oveq1 |
|
| 14 |
11 12 13
|
ifbieq12d |
|
| 15 |
10 14
|
ifbieq2d |
|
| 16 |
15
|
adantl |
|
| 17 |
|
iftrue |
|
| 18 |
8 17
|
syl |
|
| 19 |
18
|
adantr |
|
| 20 |
8
|
eqcomd |
|
| 21 |
20
|
adantr |
|
| 22 |
19 21
|
eqtrd |
|
| 23 |
16 22
|
eqtrd |
|
| 24 |
9 23 7 7
|
fvmptd |
|
| 25 |
8
|
fveq2d |
|
| 26 |
|
fvsng |
|
| 27 |
1 1 26
|
syl2anc |
|
| 28 |
25 27
|
eqtrd |
|
| 29 |
28
|
eqcomd |
|
| 30 |
24 8 29
|
3eqtrd |
|
| 31 |
1 2 3 4 5 6
|
metakunt19 |
|
| 32 |
31
|
simpld |
|
| 33 |
32
|
simp3d |
|
| 34 |
31
|
simprd |
|
| 35 |
1
|
nnzd |
|
| 36 |
|
fzsn |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
ineq2d |
|
| 39 |
38
|
eqcomd |
|
| 40 |
2
|
nncnd |
|
| 41 |
1
|
nncnd |
|
| 42 |
40 41
|
pncan3d |
|
| 43 |
42
|
oveq2d |
|
| 44 |
|
fzoval |
|
| 45 |
35 44
|
syl |
|
| 46 |
43 45
|
eqtrd |
|
| 47 |
46
|
eqcomd |
|
| 48 |
|
nnuz |
|
| 49 |
2 48
|
eleqtrdi |
|
| 50 |
2
|
nnzd |
|
| 51 |
50 35
|
jca |
|
| 52 |
|
znn0sub |
|
| 53 |
51 52
|
syl |
|
| 54 |
3 53
|
mpbid |
|
| 55 |
|
fzoun |
|
| 56 |
49 54 55
|
syl2anc |
|
| 57 |
47 56
|
eqtrd |
|
| 58 |
|
fzoval |
|
| 59 |
50 58
|
syl |
|
| 60 |
42
|
oveq2d |
|
| 61 |
|
fzoval |
|
| 62 |
35 61
|
syl |
|
| 63 |
60 62
|
eqtrd |
|
| 64 |
59 63
|
uneq12d |
|
| 65 |
57 64
|
eqtrd |
|
| 66 |
65
|
ineq1d |
|
| 67 |
66
|
eqcomd |
|
| 68 |
1
|
nnred |
|
| 69 |
68
|
ltm1d |
|
| 70 |
|
fzdisj |
|
| 71 |
69 70
|
syl |
|
| 72 |
67 71
|
eqtrd |
|
| 73 |
39 72
|
eqtrd |
|
| 74 |
|
elsng |
|
| 75 |
7 74
|
syl |
|
| 76 |
8 75
|
mpbird |
|
| 77 |
33 34 73 76
|
fvun2d |
|
| 78 |
77
|
eqcomd |
|
| 79 |
30 78
|
eqtrd |
|