Metamath Proof Explorer


Theorem metakunt22

Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt22.1 φM
metakunt22.2 φI
metakunt22.3 φIM
metakunt22.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
metakunt22.5 C=x1I1x+M-I
metakunt22.6 D=xIM1x+1-I
metakunt22.7 φX1M
metakunt22.8 φ¬X=M
metakunt22.9 φ¬X<I
Assertion metakunt22 φBX=CDMMX

Proof

Step Hyp Ref Expression
1 metakunt22.1 φM
2 metakunt22.2 φI
3 metakunt22.3 φIM
4 metakunt22.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
5 metakunt22.5 C=x1I1x+M-I
6 metakunt22.6 D=xIM1x+1-I
7 metakunt22.7 φX1M
8 metakunt22.8 φ¬X=M
9 metakunt22.9 φ¬X<I
10 4 a1i φB=x1Mifx=MMifx<Ix+M-Ix+1-I
11 eqeq1 x=Xx=MX=M
12 breq1 x=Xx<IX<I
13 oveq1 x=Xx+M-I=X+M-I
14 oveq1 x=Xx+1-I=X+1-I
15 12 13 14 ifbieq12d x=Xifx<Ix+M-Ix+1-I=ifX<IX+M-IX+1-I
16 11 15 ifbieq2d x=Xifx=MMifx<Ix+M-Ix+1-I=ifX=MMifX<IX+M-IX+1-I
17 16 adantl φx=Xifx=MMifx<Ix+M-Ix+1-I=ifX=MMifX<IX+M-IX+1-I
18 iffalse ¬X=MifX=MMifX<IX+M-IX+1-I=ifX<IX+M-IX+1-I
19 8 18 syl φifX=MMifX<IX+M-IX+1-I=ifX<IX+M-IX+1-I
20 iffalse ¬X<IifX<IX+M-IX+1-I=X+1-I
21 9 20 syl φifX<IX+M-IX+1-I=X+1-I
22 19 21 eqtrd φifX=MMifX<IX+M-IX+1-I=X+1-I
23 22 adantr φx=XifX=MMifX<IX+M-IX+1-I=X+1-I
24 17 23 eqtrd φx=Xifx=MMifx<Ix+M-Ix+1-I=X+1-I
25 7 elfzelzd φX
26 1zzd φ1
27 2 nnzd φI
28 26 27 zsubcld φ1I
29 25 28 zaddcld φX+1-I
30 10 24 7 29 fvmptd φBX=X+1-I
31 1 2 3 4 5 6 metakunt19 φCFn1I1DFnIM1CDFn1I1IM1MMFnM
32 31 simpld φCFn1I1DFnIM1CDFn1I1IM1
33 32 simp3d φCDFn1I1IM1
34 31 simprd φMMFnM
35 indir 1I1IM1M=1I1MIM1M
36 35 a1i φ1I1IM1M=1I1MIM1M
37 1 2 3 metakunt18 φ1I1IM1=1I1M=IM1M=M-I+1M11MI=M-I+1M1M=1MIM=
38 37 simpld φ1I1IM1=1I1M=IM1M=
39 38 simp2d φ1I1M=
40 38 simp3d φIM1M=
41 39 40 uneq12d φ1I1MIM1M=
42 unidm =
43 42 a1i φ=
44 41 43 eqtrd φ1I1MIM1M=
45 36 44 eqtrd φ1I1IM1M=
46 1 nnzd φM
47 46 26 zsubcld φM1
48 2 nnred φI
49 elfznn X1MX
50 7 49 syl φX
51 50 nnred φX
52 48 51 lenltd φIX¬X<I
53 9 52 mpbird φIX
54 elfzle2 X1MXM
55 7 54 syl φXM
56 df-ne XM¬X=M
57 8 56 sylibr φXM
58 57 necomd φMX
59 55 58 jca φXMMX
60 1 nnred φM
61 51 60 ltlend φX<MXMMX
62 59 61 mpbird φX<M
63 zltlem1 XMX<MXM1
64 25 46 63 syl2anc φX<MXM1
65 62 64 mpbid φXM1
66 27 47 25 53 65 elfzd φXIM1
67 elun2 XIM1X1I1IM1
68 66 67 syl φX1I1IM1
69 33 34 45 68 fvun1d φCDMMX=CDX
70 32 simp1d φCFn1I1
71 32 simp2d φDFnIM1
72 38 simp1d φ1I1IM1=
73 70 71 72 66 fvun2d φCDX=DX
74 6 a1i φD=xIM1x+1-I
75 simpr φx=Xx=X
76 75 oveq1d φx=Xx+1-I=X+1-I
77 25 zred φX
78 lenlt IXIX¬X<I
79 48 77 78 syl2anc φIX¬X<I
80 9 79 mpbird φIX
81 77 60 ltlend φX<MXMMX
82 59 81 mpbird φX<M
83 82 64 mpbid φXM1
84 27 47 25 80 83 elfzd φXIM1
85 74 76 84 29 fvmptd φDX=X+1-I
86 73 85 eqtrd φCDX=X+1-I
87 69 86 eqtrd φCDMMX=X+1-I
88 87 eqcomd φX+1-I=CDMMX
89 30 88 eqtrd φBX=CDMMX